594
Views
1
CrossRef citations to date
0
Altmetric
Review

Fabrication methods and property analysis of metal foams – a technical overview

&
Pages 1877-1902 | Received 13 Oct 2022, Accepted 25 Feb 2023, Published online: 15 Mar 2023

References

  • De Meller MA. Produit métallique pour l'obtention d'objets laminés, moulés ou autres, et procédés pour sa fabrication. French Patent. 1925;615(147):1926.
  • Banhart J. Light-metal foams – history of innovation and technological challenges. Adv Eng Mater. 2013;15(3):82–111.
  • Baumeister J. Verfahren zur Herstellung poröser Metallkörper. German Patent. 1991;40(18):360.
  • Baumeister J, Schrader H. Verfahren zur Herstellung aufschäumbarer Metallkörper und Verwendung derselben. German Patent. 1992;41(01):630.
  • Banhart J. Manufacture characterization and application of cellular metals and metal foams. Prog Mater Sci. 2001;46:599–632.
  • Banhart J, Ashby M, Fleck N. Metal foams and porous metal structures. Conference on Metal Foams and Porous Metal Structures. Vol. 14. 1999.
  • Banhart J, Ashby M, Fleck N. International conference on cellular metals and metal foaming technology. 2001.
  • Binks BP, Horozov TS, eds. Colloidal particles at liquid interfaces. Cambridge University Press; 2006.
  • Degischer H-P, Kriszt B. Handbook of cellular metals. Vol. 71. Weinheim: Wiley-VCH; 2002.
  • Gibson LJ. Cellular solids. MRS Bull. 2003;28(4):270–274.
  • Banhart J, Weaire D. On the road again: metal foams find favor. Phys Today. 2002;55(7):37–42.
  • Banhart J, Norman AF, Mortensen A. Proceedings of the International Conference on Cellular Metals: Manufacturing, Properties, Applications (MetFoam’03). 2003.
  • Du R, Jin X, Hubner R, et al. Engineering self-supported noble metal foams toward electrocatalysis and beyond. Adv Energy Mater. 2020;10(11):1901945.
  • Atwater MA, Guevara LN, Darling KA, et al. Solid state porous metal production: a review of the capabilities, characteristics, and challenges. Adv Eng Mater. 2018;20(7):1700766.
  • Zhao B, Gain AK, Ding W, et al. A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int J Adv Manuf Technol. 2018;95(5):2641–2659.
  • Jung A, Diebels S. Micromechanical characterization of metal foams. Adv Eng Mater. 2019;21(8):1900237.
  • Ashby MF, Gibson LJ. Cellular solids: structure and properties. Cambridge, UK: Press Syndicate of the University of Cambridge; 1997. p. 175–231.
  • Kiser M, He MY, Zok FW. The mechanical response of ceramic microballoon reinforced aluminium matrix composites under compressive loading. Acta Mater. 1999;47(9):2685–2694.
  • Rohatgi PK, Gupta N, Schultz BF, et al. The synthesis, compressive properties, and applications of metal matrix syntactic foams. Jom. 2011;63(2):36–42.
  • Jin I, Kenny LD, Sang H. Method of producing lightweight foamed metal. Patent NumberUS 4973358; 1990.
  • Kenny LD, Thomas M. Process for shape casting of particle stabilized metal foam. U.S. Patent No. 5,281,251; 1994.
  • Ruch W, Kirkevag B. International Patent Application PCT/NO90/00115 (1990). 1991: 91-01387.
  • Lloyd DJ, McLeod AD, Morris PL, et al. Melt process for the production of metal-matrix composite materials with enhanced particle/matrix wetting. U.S. Patent No. 5,028,392; 1991.
  • Prakash O, Sang H, Embury JD. Structure and properties of Al SiC foam. Mater Sci Eng A. 1995;199(2):195–203.
  • Akiyama S, Ueno H, Imagawa K, et al. Foamed metal and method of producing same. U.S. Patent No. 4,713,277; 1987.
  • Miyoshi T, Itoh M, Akiyama S, et al. ALPORAS aluminium foam: production process, properties, and applications. Adv Eng Mater. 2000;2(4):179–183.
  • Schwartz DS, Shih DS, Evans AG, et al. Materials Research Society, Symposium Proceedings, Volume 521. Porous and Cellular Materials for Structural Applications. Materials Research Society Warrendale PA; 1998.
  • Shapovalov VI. Method for manufacturing porous articles. U.S. Patent No. 5,181,549; 1993.
  • Zheng Y, Sridhar S, Russell KC. Advances in porous materials. MRS Symp. Proc. Vol. 371. 1995.
  • Simone AE, Gibson LJ. The compressive behaviour of porous copper made by the GASAR process. J Mater Sci. 1997;32(2):451–457.
  • ISO, ASTM. ISO/ASTM 52900: 2015 additive manufacturing–general principles–terminology. ASTM F2792-10e1. 2015;1:1–19.
  • du Plessis A, Razavi SM, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: a review. Prog Mater Sci. 2021;125:100918.
  • Milewski JO. Additive manufacturing of metals. Vol. 258. Cham: Springer International Publishing AG; 2017.
  • Murr LE, Gaytan SM, Ramirez DA, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. 2012;28(1):1–14.
  • Koike R, Matsumoto T, Kakinuma Y, et al. A basic study on metal foam fabrication with titanium hydride in direct energy deposition. Procedia Manuf. 2018;18:68–73.
  • Koike R, Matsumoto T, Aoyama T, et al. Fabrication method for stainless steel foam block in directed energy deposition. CIRP Ann. 2020;69(1):173–176.
  • Shim DS, Seo JY, Yoon HS, et al. Additive manufacturing of porous metals using laser melting of Ti6Al4V powder with a foaming agent. Mater Res Express. 2018;5(8):086518.
  • Shim DS, Seo JY. Fabrication of porous metals layered by laser-assisted melting of sprayed Ti6Al4V powder and foaming agent mixture. Mater Lett. 2018;219:243–246.
  • Changdar A, Chakraborty SS. Laser processing of metal foam-A review. J Manuf Process. 2021;61:208–225.
  • Hernández-Nava E, Smith CJ, Derguti F, et al. The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing. Acta Mater. 2015;85:387–395.
  • Kang B, Hong S, Yoo C, et al. 3D porous metal structure manufacturing using UV pulsed laser and copper formate solution. Appl Phys A. 2018;124(9):1–5.
  • Mustapha KA, Shikh Anuar F, Mohd Saat FA, et al. Production of open-cell foam using additive manufacturing method and porous morphology effects. International Conference and Exhibition on Sustainable Energy and Advanced Materials. Springer, Singapore; 2022.
  • Takeuchi T, Koike R, Kakinuma Y, et al. Basic study of fabrication conditions for foam stainless in directed energy deposition. Proceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM21 2021.10. The Japan Society of Mechanical Engineers; 2021.
  • Moser S, Kenel C, Wehner LA, et al. 3D ink-printed, sintered porous silicon scaffolds for battery applications. J Power Sources. 2021;507:230298.
  • Park H, Choe H, Dunand DC. Microstructure and compressive properties of 3D-extrusion-printed, aluminized cobalt-based superalloy microlattices. Mater Sci Eng A. 2021;815:141262.
  • Song B, Kenel C, Dunand DC. 3D ink-extrusion printing and sintering of Ti, Ti-TiB and Ti-TiC microlattices. Addit Manuf. 2020;35:101412.
  • Matheson K, Cross K, Javahery I, et al. Comparison of conventional open-cell aluminium foam and its additively manufactured twin. Materials Science and Technology Conference and Exhibition 2016, MS and T 2016. Vol. 2; 2016.
  • Carpenter JA, Passaleva N, Haring M, et al. 3D printing of hierarchical porous steel and iron-based materials. Adv Mater Technol. 2022; 8(3): 2200971.
  • Valdez M, Kozuch C, Faierson EJ, et al. Induced porosity in super alloy 718 through the laser additive manufacturing process: microstructure and mechanical properties. J Alloys Compd. 2017;725:757–764.
  • Yang L, Cormier D, West H, et al. Non-stochastic Ti–6Al–4V foam structures with negative Poisson's ratio. Mater Sci Eng A. 2012;558:579–585.
  • Kenel C, Geisendorfer NR, Shah RN, et al. Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders. Addit Manuf. 2021;37:101637.
  • Xu C, Liu T, Guo W, et al. 3D printing of powder-based inks into functional hierarchical porous TiO2 materials. Adv Eng Mater. 2020;22(3):1901088.
  • Atwater MA, Guevara LN, Darling KA, et al. Solid state porous metal production: a review of the capabilities, characteristics, and challenges. Adv Eng Mater. 2018;20(7):1700766.
  • Mostafaei A, Kimes KA, Stevens EL, et al. Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam. Acta Mater. 2017;131:482–490.
  • Miyanaji H, Ma D, Atwater MA, et al. Binder jetting additive manufacturing of copper foam structures. Addit Manuf. 2020;32:100960.
  • Koizumi T, Kido K, Kita K, et al. German patent 40 18 360 German patent 40 18 360, 1990. Mater Trans. 2011;52(4):728–733.
  • Bram M, Stiller C, Buchkremer HP, et al. Preparation and characterization of high-porosity titanium, stainless steel, and superalloy parts. Metal Foams Porous Metal Struct. 1999;ISBN 3-9805748-7-3:197-202.
  • Wazen RM, Lefebvre LP, Baril E, et al. Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res Part B: Appl Biomat. 2010;94(1):64–71.
  • Jin I, Kenny LD, Sang H. Lightweight foamed metal and its production. International Patent Application WO91/03578; 1991: 21.
  • Thomas M, Kenny LD. Production of particle-stabilized metal foams. PCT Patent WO 94.017218; 1994: 21.
  • Von Zeppelin F, Hirscher M, Stanzick H, et al. Desorption of hydrogen from blowing agents used for foaming metals. Compos Sci Technol. 2003;63(16):2293–2300.
  • Gui MC, Wang DB, Wu JJ, et al. Deformation and damping behaviors of foamed Al–Si–SiCp composite. Mater Sci Eng A. 2000;286(2):282–288.
  • Huang L, Wang H, Yang D, et al. Effects of scandium additions on mechanical properties of cellular Al-based foams. Intermetallics. 2012;28:71–76.
  • Yang DH, Yang SR, Ma AB, et al. Compression properties of cellular AlCu5Mn alloy foams with wide range of porosity. J Mater Sci. 2009;44(20):5552–5556.
  • Aguirre-Perales LY, Jung I-H, Drew RA. Foaming behavior of powder metallurgical Al–Sn foams. Acta Mater. 2012;60(2):759–769.
  • Rabiei A, O’Neill AT, Neville BP. Processing and development of a new high strength metal foam. MRS Online Proc Lib (OPL). 2004;851:NN11 -4.
  • Prabhu B, Suryanarayana C, An L, et al. Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater Sci Eng A. 2006;425(1-2):192–200.
  • Du Y, Li AB, Zhang XX, et al. Enhancement of the mechanical strength of aluminium foams by SiC nanoparticles. Mater Lett. 2015;148:79–81.
  • Zhang Z, Ding J, Xia X, et al. Fabrication and characterization of closed-cell aluminium foams with different contents of multi-walled carbon nanotubes. Mater Des. 2015;88:359–365.
  • Wang J, Yang X, Zhang M, et al. A novel approach to obtain in-situ growth carbon nanotube reinforced aluminium foams with enhanced properties. Mater Lett. 2015;161:763–766.
  • Liu J, Yu S, Zhu X, et al. Effect of Al2O3 short fiber on the compressive properties of Zn–22Al foams. Mater Lett. 2008;62(21-22):3636–3638.
  • Liu JA, Yu SR, Hu ZQ, et al. Deformation and energy absorption characteristic of Al2O3 f/Zn–Al composite foams during compression. J Alloys Compd. 2010;506(2):620–625.
  • Chakraborty M, Garcia-Moreno F, Banhart J. Foamability of MgAl2O4 (spinel)-reinforced aluminium alloy composites. Metall Mater Trans A. 2011;42(9):2898–2908.
  • Guo C, Zou T, Shi C, et al. Compressive properties and energy absorption of aluminium composite foams reinforced by in-situ generated MgAl2O4 whiskers. Mater Sci Eng A. 2015;645:1–7.
  • Carrino L, Durante M, Franchitti S, et al. Mechanical performance analysis of hybrid metal-foam/composite samples. Int J Adv Manuf Technol. 2012;60(1):181–190.
  • Drolet JP. A novel production method of metal foam. Int. J. Powder Met. 1977;13:223–227.
  • Kulkarni SB, Ramakrishnan P. Foamed aluminium. J Powder Metall. 1973;9(1):41–45.
  • Product data sheet of SEAC B.V., Netherlands; 1986.
  • Product data sheet of Sumitomo Electric, Japan; 1986.
  • Paserin V, Marcuson S, Shu J, et al. CVD technique for Inco nickel foam production. Adv Eng Mater. 2004;6(6):454–459.
  • Torres Y, Rodriguez JA, Arias S, et al. Processing, characterization and biological testing of porous titanium obtained by space-holder technique. J Mater Sci. 2012;47(18):6565–6576.
  • Limper A, Harhues T, Keller R, et al. Two-level porosity electrodes from metal-polymer dispersions. Electrochem Commun. 2022;135:107205.
  • Yu X, Lu Z, Zhai W. Enhancing the flow resistance and sound absorption of open-cell metallic foams by creating partially-open windows. Acta Mater. 2021;206:116666.
  • Singh R, Lee PD, Jones JR, et al. Hierarchically structured titanium foams for tissue scaffold applications. Acta Biomater. 2010;6(12):4596–4604.
  • Dmitruk A, Kapłon H, Naplocha K. Mechanical and thermal properties of aluminium foams manufactured by investment casting method. Arch Foundry Eng. 2022;22(1):37.
  • Movahedi N, Murch GE, Belova IV, et al. Functionally graded metal syntactic foam: fabrication and mechanical properties. Mater Des. 2019;168:107652.
  • Thiele K-H. A contribution to the chemistry of organotransition metal halides. Pure Appl Chem. 1972;30(3-4):575–586.
  • de la Muela S, Garcia Cambronero LE, Malheiros LF ,et al. New aluminium syntactic foam: synthesis and mechanical characterization. Materials (Basel). 2022;15(15):5320.
  • Bolat Ç, Bekar C, Göksenli A. Mechanical and physical characteristics of bubble alumina reinforced aluminium syntactic foams made through recyclable pressure infiltration technique. Gazi Univ J Sci. 2022;35(1): 184–196.
  • Spratt M, Newkirk JW, Chandrashekhara K. Aluminium matrix syntactic foam fabricated with additive manufacturing. 2017: 242.
  • Rohatgi PK, Gupta N, Schultz BF, et al. The synthesis, compressive properties, and applications of metal matrix syntactic foams. Jom. 2011;63(2):36–42.
  • Spratt M, Newkirk JW, Chandrashekhara K. Fabrication of metal matrix syntactic foams by a laser additive manufacturing process. Mater Sci Technol Conf Exhibit. 2016; 2: 1319-1326.
  • Neville BP, Rabiei A. Composite metal foams processed through powder metallurgy. Mater Des. 2008;29(2):388–396.
  • Rabiei A, O’Neill AT. A study on processing of composite metal foam via casting. Mater Sci Eng A. 2005;404(1-2):159–164.
  • Rabiei A. Composite metal foam and methods of preparation thereof. U.S. Patent No. 9,208,912; 2015.
  • Májlinger K, Orbulov IN. Characteristic compressive properties of hybrid metal matrix syntactic foams. Mater Sci Eng A. 2014;606:248–256.
  • Bálint A, Szlancsik A. Mechanical properties of iron hollow sphere reinforced metal matrix syntactic foams. Mater Sci Forum; 2015;812.
  • Orbulov IN, Szlancsik A, Kemeny A, et al. Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Compos Part A: Appl Sci Manuf. 2020;135:105923.
  • Lehmhus D, Busse M. Potential new matrix alloys for production of PM aluminium foams. Adv Eng Mater. 2004;6(6):391–396.
  • Hosseini SM, Habibolahzadeh A, Petranova V, et al. Influence of nano-SiCp on the foamability and microstructure of Al/TiH2 foam sheet manufactured by continual annealing and roll-bonding process. Mater Des. 2016;97:483–491.
  • Asavavisithchai S, Kennedy AR. Effect of powder oxide content on the expansion and stability of PM-route Al foams. J Colloid Interface Sci. 2006;297(2):715–723.
  • Asavavisithchai S, Kennedy AR. The effect of compaction method on the expansion and stability of aluminium foams. Adv Eng Mater. 2006;8(9):810–815.
  • Mukherjee M, Garcia-Moreno F, Jimenez C, et al. Microporosity in aluminium foams. Acta Mater. 2017;131:156–168.
  • Uzun A, Turker M. The effect of production parameters on the foaming behavior of spherical-shaped aluminium foam. Mater Res. 2014;17:311–315.
  • Jeenager VK, Pancholi V. Influence of cell wall microstructure on the energy absorption capability of aluminium foam. Mater Design (1980-2015). 2014;56:454–459.
  • Amirjan M, Bozorg M. Properties and corrosion behavior of Al based nanocomposite foams produced by the sintering-dissolution process. Int J Miner Metall Mater. 2018;25(1):94–101.
  • Haesche M, Lehmhus D, Weise J, et al. Carbonates as foaming agent in chip-based aluminium foam precursor. J Mater Sci Technol. 2010;26(9):845–850.
  • Paulin I, Sustarsic B, Kevorkijan V, et al. Synthesis of aluminium foams by the powder-metallurgy process: compacting of precursors. Mater Tehnol. 2011;45(1):13–19.
  • Priprava IK, Poroznostjo Z, Izdelanih ZD, et al. Synthesis and characterisation of closed cells aluminium foams containing dolomite powder as foaming agent. Materiali Tehnologije. 2010;44(6):363–371.
  • Koizumi T, Kido K, Kita K, et al. Foaming agents for powder metallurgy production of aluminium foam. Mater Trans. 2011;52(4):728–733.
  • Li D-W, Jie LI, Tao LI, et al. Preparation and characterization of aluminium foams with ZrH2 as foaming agent. Trans Nonferrous Met Soc China. 2011;21(2):346–352.
  • Surace R, De Filippis LA, Ludovico AD, et al. Experimental analysis of the effect of control factors on aluminium foam produced by powder metallurgy. Est J Eng. 2007;13(2):156–167.
  • Nakamura T, Gnyloskurenko SV, Sakamoto K, et al. Development of new foaming agent for metal foam. Mater Trans. 2002;43(5):1191–1196.
  • Amirah AH, Nurulakmal MS, Anasyida AS. The effect of space holder content and decomposition methods in fabrication of aluminium foams by powder metallurgy method using carbamide space holder. AIP Conference Proceedings. Vol. 1756. No. 1. AIP Publishing LLC; 2016.
  • Gaillard C, Despois JF, Mortensen A. Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams. Mater Sci Eng A. 2004;374(1-2):250–262.
  • Despois JF, Marmottant A, Salvo L, et al. Influence of the infiltration pressure on the structure and properties of replicated aluminium foams. Mater Sci Eng A. 2007;462(1-2):68–75.
  • Mohammed SH, Aljubouri AA. Manufacturing of aluminium foam as a light weight structural material. Eng Tech J. 2016;34(5):697–702.
  • Yang X, Hu Q, Du J, et al. Compression fatigue properties of open-cell aluminium foams fabricated by space-holder method. Int J Fatigue. 2019;121:272–280.
  • Ertürk AT. Production of aluminium glass fiber reinforced foam synthesized by space-holder technique. Acta Phys Pol A. 2016;129(4):592–595.
  • Hussain Z, Suffin NSA. Microstructure and mechanical behaviour of aluminium foam produced by sintering dissolution process using NaCl space holder. J Eng Sci. 2011;7:37–49.
  • Jamal NA, Maizatul O, Anuar H, et al. Preliminary development of porous aluminium via powder metallurgy technique: Vorentwicklung von porösem Aluminium durch Pulvermetallurgie. Materialwiss Werkstofftech. 2018;49(4):460–466.
  • Michailidis N, Stergioudi F, Tsouknidas A, et al. Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material. Mater Sci Eng A. 2011;528(3):1662–1667.
  • Zhao NQ, Jiang B, Du XW, et al. Effect of Y2O3 on the mechanical properties of open cell aluminium foams. Mater Lett. 2006;60(13-14):1665–1668.
  • Vendra LJ, Rabiei A. A study on aluminium–steel composite metal foam processed by casting. Mater Sci Eng A. 2007;465(1-2):59–67.
  • Garcia-Avila M, Portanova M, Rabiei A. Ballistic performance of composite metal foams. Compos Struct. 2015;125:202–211.
  • Rajak DK, Kumaraswamidhas LA, Das S. Technical overview of aluminium alloy foam. Rev Adv Mater Sci. 2017;49(1):68–86.
  • Ashby MF, Lu T. Metal foams: A survey. Sci China Ser B: Chem. 2003;46(6):521–532.
  • Rajak DK, Kumaraswamidhas LA, Das S. Investigation and characterisation of aluminium alloy foams with TiH2 as a foaming agent. Mater Sci Technol. 2016;32(13):1338–1345.
  • Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminium foam. Mater Sci Eng A. 2000;281(1-2):1–7.
  • Wang Z, Ma H, Zhao L, et al. Studies on the dynamic compressive properties of open-cell aluminium alloy foams. Scr Mater. 2006;54(1):83–87.
  • Raj RE, Parameswaran V, Daniel BSS. Comparison of quasi-static and dynamic compression behavior of closed-cell aluminium foam. Mater Sci Eng A. 2009;526(1-2):11–15.
  • Hamada T, Kanahashi H, Miyoshi T, et al. Effects of the strain rate and alloying on the compression characteristics of closed cell aluminium foams. Mater Trans. 2009;50(6):1418–1425.
  • Sun Y, Burgueno R, Vanderklok AJ, et al. Compressive behavior of aluminium/copper hybrid foams under high strain rate loading. Mater Sci Eng A. 2014;592:111–120.
  • Pinto P, Peixinho N, Silva F, et al. Compressive properties and energy absorption of aluminium foams with modified cellular geometry. J Mater Process Technol. 2014;214(3):571–577.
  • Jeenager VK, Pancholi V. Influence of cell wall microstructure on the energy absorption capability of aluminium foam. Mater Design (1980-2015). 2014;56:454–459.
  • Rabiei A, Vendra L, Reese N, et al. Processing and characterization of a new composite metal foam. Mater Trans. 2006;47(9):2148–2153.
  • Katona B, Szlancsik A, Tabi T, et al. Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Mater Sci Eng A. 2019;739:140–148.
  • Jung A, Koblischka MR, Lach E, et al. Hybrid metal foams. Int J Mater Sci. 2012;2(4):97–107.
  • Maurer M, Zhao L, Lugscheider E. Surface refinement of metal foams. Adv Eng Mater. 2002;4(10):791–797.
  • Hedayati R, Rubio Carpio A, Luesutthiviboon S, et al. Role of polymeric coating on metallic foams to control the aeroacoustic noise reduction of airfoils with permeable trailing edges. Materials (Basel). 2019;12(7):1087.
  • Giani L, Cristiani C, Groppi G, et al. Washcoating method for Pd/γ-Al2O3 deposition on metallic foams. Appl Catal, B. 2006;62(1-2):121–131.
  • Li Y-H, Shang X-Y. Recent progress in porous TiNb-based alloys for biomedical implant applications. Mater Sci Technol. 2020;36(4):385–392.
  • Song JL, Zhao YL, He XJ, et al. Microstructure and properties of ultrasonic assisted copper coated graphite foams. Mater Sci Technol. 2013;29(11):1389–1393.
  • Van der Biest OO, Vandeperre LJ. Electrophoretic deposition of materials. Annu Rev Mater Res. 1999;29:327.
  • Koskinen J. Cathodic-arc and thermal-evaporation deposition. Reference Module in Materials Science and Materials Engineering. Elsevier Ltd.; 2014. p. 3–55.
  • Neacşu IA, Nicoara AI, Vasile OR, et al. Inorganic micro-and nanostructured implants for tissue engineering. Nanobiomaterials in Hard Tissue Engineering. William Andrew Publishing; 2016. p. 271–295.
  • Brinker CJ, Hurd AJ. Fundamentals of sol-gel dip-coating. J Phys III. 1994;4(7):1231–1242.
  • Yusop AHM, Daud NM, Nur H, et al. Controlling the degradation kinetics of porous iron by poly (lactic-co-glycolic acid) infiltration for use as temporary medical implants. Sci Rep. 2015;5(1):1–17.
  • Pfeifer M. Manufacturing process considerations. Mater Enabled Des. Oxford: Butterworth-Heinemann; 2009. p. 115–160.
  • Rúa JM, Zuleta AA, Ramirez J, et al. Micro-arc oxidation coating on porous magnesium foam and its potential biomedical applications. Surf Coat Technol. 2019;360:213–221.
  • Oriňaková R, Gorejova R, Kralova ZO, et al. Evaluation of mechanical properties and hemocompatibility of open cell iron foams with polyethylene glycol coating. Appl Surf Sci. 2020;505:144634.
  • Haverová L, Orinakova R, Orinak A, et al. An in vitro corrosion study of open cell iron structures with PEG coating for bone replacement applications. Metals (Basel). 2018;8(7):499.
  • Alcantar NA, Aydil ES, Israelachvili JN. Polyethylene glycol–coated biocompatible surfaces. J Biomed Mater Res: Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2000;51(3):343–351.
  • Gorejová R, Orinakova R, Orsagova Kralova Z, et al. In vitro corrosion behavior of biodegradable iron foams with polymeric coating. Materials (Basel). 2020;13(1):184.
  • Yao X, Zhou N, Wan L, et al. Polyethyleneimine-coating enhances adenoviral transduction of mesenchymal stem cells. Biochem Biophys Res Commun. 2014;447(3):383–387.
  • Hrubovčáková M, Kupkova M, Dzupon M, et al. Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials. Int J Electrochem Sci. 2017;12(12):11122–11136.
  • Julmi S, Kruger AK, Waselau AC, et al. Processing and coating of open-pored absorbable magnesium-based bone implants. Mater Sci Eng: C. 2019;98:1073–1086.
  • Elieh-Ali-Komi D, Hamblin MR. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore). 2016;4(3):411.
  • Ray S, Thormann U, Eichelroth M, et al. Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing. Biomaterials. 2018;157:1–16.
  • Orinaková R, Orinak A, Kupkova M, et al. In vitro degradation and cytotoxicity evaluation of iron biomaterials with hydroxyapatite film. Int J Electrochem Sci. 2015;10:8158–8174.
  • Wen Z, Zhang L, Chen C, et al. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater Sci Eng: C. 2013;33(3):1022–1031.
  • Su Y, Champagne S, Trenggono A, et al. Development and characterization of silver containing calcium phosphate coatings on pure iron foam intended for bone scaffold applications. Mater Des. 2018;148:124–134.
  • Wang X, Wang X, Wang D, et al. A novel approach to fabricate Zn coating on Mg foam through a modified thermal evaporation technique. J Mater Sci Technol. 2018;34(9):1558–1563.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.