366
Views
0
CrossRef citations to date
0
Altmetric
Review

Research progress on ceramic nanomaterials reinforced aluminum matrix nanocomposites

, &
Pages 1841-1857 | Received 14 Oct 2022, Accepted 28 Feb 2023, Published online: 02 Apr 2023

References

  • Bahmani F, Kazemi SH, Kazemi H, et al. Nanocomposite of copper-molybdenum-oxide nanosheets with graphene as high-performance materials for supercapacitors. J Alloys Compd. 2019;784:500–512.
  • Hashemi P, Karimian N, Khoshsafar H, et al. Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: application to the determination of carbaryl and fenamiphos pesticides. Mater Sci Eng C. 2019;102:764–772.
  • Kaliaraj GS, Ramadoss A. Nickel-zinc sulfide nanocomposite thin film as an efficient cathode material for high-performance hybrid supercapacitors. Mater Sci Semicond Process. 2020;105. Art. No. 104709.
  • Naresh N, Jena P, Satyanarayana N. Facile synthesis of MoO3/rGO nanocomposite as anode materials for high performance lithium-ion battery applications. J Alloys Compd. 2019;810. Art. No. 151920.
  • Vinodhini J, Sudheendra K, Bhowmik S, et al. Novel thermally insulated ultra-lightweight fireproof and high impact resistance advanced hybrid composite. Polym Eng Sci. 2022;62(9):3026–3036.
  • Tria DE, Kouadria A, Malachowski J, et al. Performance evaluation of multilayered ceramic composite armors: new design and advanced predictive method. Proc Inst Mech Eng L. 2022;236(12):2516–2538.
  • Kang JL, Cui YR, Song JJ, et al. Advanced composite material: effect of composite SiC on compressive strength and hardness of porous titanium. J Mater Res Technol. 2022;16:960–967.
  • Amiryaghoubi N, Fathi M, Barar J, et al. Recent advances in graphene-based polymer composite scaffolds for bone/ cartilage tissue engineering. J Drug Deliv Sci Technol. 2022;72. Art. No. 103360.
  • Jin FL, Lee SY, Park SJ. Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Lett. 2013;14(2):76–88.
  • Wang XY, Zhou WC, Luo F, et al. Microstructure and mechanical properties of ceramic matrix composites. Rare Met Mater Eng. 2009;38:544–546.
  • Mortensen A, Llorca J. Metal matrix composites. In: DR Clarke, M Ruhle, F Zok, editors. Vol. 40, Annual review of materials research; 2010. p. 243–270.
  • Sharif MA, Sueyoshi H. Fabrication and microstructural investigations of porous ceramic particle/polymer matrix composites. Mater Sci Technol. 2008;24(1):85–89.
  • Mileiko ST. High temperature oxide-fibre/metal-matrix composites. Mater Chem Phys. 2018;210:353–361.
  • Mazloum A, Oddone V, Reich S, et al. Connection between strength and thermal conductivity of metal matrix composites with uniform distribution of graphite flakes. Int J Eng Sci. 2019;139:70–82.
  • Shoukry SN, Prucz JC, Shankaranarayana PG, et al. Microstructure modeling of particulate reinforced metal matrix composites. Mech Adv Mater Struct. 2007;14(6):499–510.
  • Feng HB, Zhou Y, Jia DC, et al. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Cryst Growth Des. 2006;6(7):1626–1630.
  • Malaki M, Xu WW, Kasar AK, et al. Advanced metal matrix nanocomposites. Metals. 2019;9(3). Art. No. 330.
  • Junqani MT, Hosseini HRM, Azarniya A. Comprehensive structural and mechanical characterization of in-situ Al-Al3Ti nanocomposite modified by heat treatment. Mater Sci Eng A. 2020;785. Art. No. 139351.
  • Mohanavel V, Ravichandran M, Anandakrishnan V, et al. Mechanical properties of titanium diboride particles reinforced aluminum alloy matrix composites: a comprehensive review. Adv Mater Sci Eng. 2021;2021. Art. No. 7602160.
  • Alrobei H. Effect of different parameters and aging time on wear resistance and hardness of SiC-B4C reinforced AA6061 alloy. J Mech Sci Technol. 2020;34(5):2027–2034.
  • Singh LK, Bhadauria A, Laha T. Comparing the strengthening efficiency of multiwalled carbon nanotubes and graphene nanoplatelets in aluminum matrix. Powder Technol. 2019;356:1059–1076.
  • Zhong LS, Bai HQ, Wei JZ, et al. In situ fabricated metal-carbide with core-shell structure for high impact-toughness iron-matrix composite. Mater Sci Technol. 2019;35(14):1727–1734.
  • Li RT, Dong ZL, Khun NW, et al. Novel Ti based metal matrix composites reinforced with Al-Cr-Fe quasicrystals approximants. Mater Sci Technol. 2015;31(6):688–694.
  • Mishra SK, Satapathy A. Ceramic particulate filled ZA-27 metal matrix composites: comparative analysis. Mater Sci Technol. 2014;30(12):1495–1499.
  • Moghadam AD, Schultz BF, Ferguson JB, et al. Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. Jom. 2014;66(6):872–881.
  • Liu JL, Cao GH, Zhu XX, et al. Optimization of the microstructure and mechanical properties of heterogeneous Al-Al2O3 nanocomposites. Mater Today Commun. 2020;25. Art. No. 101199.
  • Sharma A, Fujii H, Paul J. Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061-CNT nanocomposite fabricated via FSP. J Manuf Process. 2020;59:604–620.
  • Abdi M, Khodabakhshi F, Gerlich AP, et al. Characterization of accumulative fold-forged magnesium-nickel multilayered composite structures. Mater Charact. 2020;167. Art. No. 110478.
  • Khales MFN, Sajjadi SA, Kamyabi-Gol A. Multipass friction stir processing of steel/SiC nanocomposite: assessment of microstructure and tribological properties. J Mater Eng Perform. 2020;29(7):4241–4250.
  • Banerjee S, Poria S, Sutradhar G, et al. Abrasive wear behavior of WC nanoparticle reinforced magnesium metal matrix composites. Surf Topogr. 2020;8(2). Art. No. 025001.
  • Barati F, Latifi M, Far EM, et al. Novel AM60-SiO2 nanocomposite produced via ultrasound-assisted casting; production and characterization. Materials. 2019;12(23). Art. No. 3976.
  • Singh LK, Bhadauria A, Laha T. Understanding the effect of bimodal microstructure on the strength-ductility synergy of Al-CNT nanocomposites. J Mater Sci. 2021;56(2):1730–1748.
  • Bhadauria A, Singh LK, Nayak SK, et al. Tensile deformation behavior and strengthening mechanism in graphene nanoplatelet reinforced bimodal grained aluminum nanocomposite synthesized by spark plasma sintering and hot rolling. Mater Charact. 2020;168. Art. No. 110568.
  • Hassanein WS, Sadoun AM, Abu-Oqail A. Effect of SiC addition on the mechanical properties and wear behavior of Al-SiC nanocomposites produced by accumulative roll bonding. Mater Res Express. 2020;7(7). Art. No. 075006.
  • Jiang WM, Zhu JW, Li GY, et al. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting. J Mater Sci Technol. 2021;88:119–131.
  • Wubieneh TA, Tegegne ST. Fabrication and characterization of aluminum (Al-6061) matrix composite reinforced with waste glass for engineering applications. J Nanomater. 2022;2022. Art. No. 8409750.
  • Gillani F, Khan MZ, Shah OR. Sensitivity analysis of reinforced aluminum based metal matrix composites. Materials. 2022;15(12). Art. No. 4225.
  • Tiku V, Navin K, Kurchania R. Study of structural and mechanical properties of Al/nano-Al2O3 metal matrix nanocomposite fabricated by powder metallurgy method. Trans Indian Inst Met. 2020;73(4):1007–1013.
  • Abu-warda N, Lopez MD, Gonzalez B, et al. Precipitation hardening and corrosion behavior of friction stir welded A6005-TiB2 nanocomposite. Met Mater Int. 2021;27(8):2867–2878.
  • Mousavian RT, Behnamfard S, Heidarzadeh A, et al. Incorporation of SiC ceramic nanoparticles into the aluminum matrix by a novel method: production of a metal matrix composite. Met Mater Int. 2021;27(8):2968–2976.
  • Abdizadeh H, Vajargah PH, Baghchesara MA. Fabrication of MgO nanoparticulates reinforced aluminum matrix composites using stir-casting method. Kov. Mater. 2015;53(5):319–326.
  • Gostariani R, Ebrahimi R, Asadabad MA, et al. Mechanical properties of Al/BN nanocomposites fabricated by planetary ball milling and conventional Hot extrusion. Acta Metall Sin–Engl Lett. 2018;31(3):245–253.
  • Wang F, Liu HP, Liu ZS, et al. Microstructure analysis, tribological correlation properties and strengthening mechanism of graphene reinforced aluminum matrix composites. Sci. Report. 2022;12(1). Art No. 9561.
  • Soni SK, Ganatra D, Mendiratta P, et al. Microstructure and mechanical characterization of Al2O3/graphene reinforced Al6061 based hybrid nanocomposites. Met Mater Int. 2022;28(2):545–555.
  • Shon IJ, Kim WJ. Simultaneous synthesis and consolidation of nanocrystalline 4Al-3SiC composite by high-frequency induction heating. J Ceram Process Res. 2017;18(1):16–20.
  • Nautiyal P, Bustillos J, Selvam T, et al. In situ investigation of deformation mechanisms induced by boron nitride nanotubes and nanointerphases in Ti-6Al-4 V alloy. Adv Eng Mater. 2022;24(12). Art. No. 2200610.
  • Hayat A, Sohail M, Hamdy MS, et al. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surf Interfaces. 2022;29. Art. No. 101725.
  • Mavhungu ST, Akinlabi ET, Onitiri MA, et al. Aluminum matrix composites for industrial use: advances and trends. Procedia Manuf. 2017;7:178–182.
  • Chak V, Chattopadhyay H, Dora TL. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J Manuf Process. 2020;56:1059–1074.
  • Jagannatham M, Chandran P, Sankaran S, et al. Tensile properties of carbon nanotubes reinforced aluminum matrix composites: a review. Carbon. 2020;160:14–44.
  • James J, Annamalai AR, Muthuchamy A, et al. Effect of wettability and uniform distribution of reinforcement particle on mechanical property (tensile) in aluminum metal matrix composite-A review. Nanomaterials. 2021;11(9). Art. No. 2230.
  • Maddaiah KC, Naresh K, Kumar GBV, et al. Influence of equal channel angular extrusion on mechanical characteristics and associated microstructural changes of aluminum, copper, titanium and magnesium alloys and their metal matrix composites-A review. J Test Eval. DOI:10.1520/JTE20210591
  • Parveez B, Maleque MA, Jamal NA. Influence of agro-based reinforcements on the properties of aluminum matrix composites: a systematic review. J Mater Sci. 2021;56(29):16195–16222.
  • Samal P, Vundavilli PR, Meher A, et al. Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J Manuf Process. 2020;59:131–152.
  • Tang SY, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites - a review. Adv Eng Mater. 2021;23(7). Art. No. 2100053.
  • Zhang HJ, Zhang BX, Gao QZ, et al. A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing. J Manuf Process. 2021;68:126–135.
  • Wu QD, Meng XM, Guan JJ, et al. Investigation on the microstructure and electrochemical corrosion properties of TiB2 reinforced aluminum matrix composites. Int J Electrochem Sci. 2022;17(6). Art. No. 220640.
  • Wang TZ, Mazanova V, Liu X. Ultrasonic effects on gas tungsten arc based wire additive manufacturing of aluminum matrix nanocomposite. Mater Des. 2022;214. Art. No. 110393.
  • Yu TY, Liu JY, He Y, et al. Microstructure and wear characterization of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites manufactured using selective laser melting. Wear. 2021;476. Art. No. 203581.
  • Hussain MZ, Khan S, Khan U. Optimization of MWCNTs/Al nanocomposite fabrication process parameters for mass density and hardness. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(14):8073–8091.
  • Wang JY, Li ZQ, Fan GL, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater. 2012;66(8):594–597.
  • Choi HJ, Kwon GB, Lee GY, et al. Reinforcement with carbon nanotubes in aluminum matrix composites. Scr Mater. 2008;59(3):360–363.
  • Behnamfard S, Mousavian RT, Afkham Y, et al. Dry milling of aluminum and ceramic nanoparticles for a particulate-injection casting of aluminum matrix nanocomposites. Silicon. 2020;12(4):913–920.
  • Brodova I, Yolshina L, Razorenov S, et al. Effect of grain size on the properties of aluminum matrix composites with graphene. Metals. 2022;12(6). Art. No. 1054.
  • Guo Y, Li WQ, Liu XG, et al. Effect of copper coating on interfacial properties, interfacial thermal resistance, microstructure evolution and mechanical properties of aluminum matrix composites. J Alloys Compd. 2022;917. Art. No. 165376.
  • Yarahmadi A, Semnani HM, Abdoos H. Simultaneous effects of carbon nanotube content and diameter size on microstructure and mechanical properties of double pressed double sintered Al/carbon nanotube nanocomposites. J Mater Eng Perform. 2022;31(9):7423–7435.
  • Carneiro I, Fernandes JV, Simoes S. Strengthening mechanisms of aluminum matrix nanocomposites reinforced with CNTs produced by powder metallurgy. Metals. 2021;11(11). Art. No. 1711.
  • Maleki A, Taherizadeh AR, Issa HK, et al. Development of a new magnetic aluminum matrix nanocomposite. Ceram Int. 2018;44(13):15079–15085.
  • Zhang S, Chen GQ, Qu TM, et al. A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity. Nano Res. 2021;14(8):2776–2782.
  • Dogan K, Ozgun MI, Subutay H, et al. Dispersion mechanism-induced variations in microstructural and mechanical behavior of CNT-reinforced aluminum nanocomposites. Arch Civ Mech Eng. 2022;22(1). Art. No: 55. DOI:10.1007/s43452-022-00374-z
  • Tabandeh-Khorshid M, Omrani E, Menezes PL, et al. Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets. Eng Sci Technol. 2016;19(1):463–469.
  • Aynalem GF. Processing methods and mechanical properties of aluminium matrix composites. Adv Mater Sci Eng. 2020;2020. Art. No. 3765791.
  • Mu DQ, Zhang Z, Liang JM, et al. Investigation of microstructures and mechanical properties of SiC/AA2024 nanocomposites processed by powder metallurgy and T6 heat treatment. Materials. 2022;15(10). Art. No. 3547.
  • Almotairy SM, Alharthi NH, Abdo HS. Regulating mechanical properties of Al/SiC by utilizing different ball milling speeds. Crystals. 2020;10(4). Art. No. 332.
  • Salur E, Aslan A, Kuntoglu M, et al. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y(2)O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Adv Powder Technol. 2021;32(10):3826–3844.
  • Chawla N, Chawla KK. Processing, metal matrix composites. New York (NY): Springer New York; 2013. p. 55–97.
  • Aborkin A, Babin D, Zalesnov A, et al. Effect of ceramic coating on carbon nanotubes interaction with matrix material and mechanical properties of aluminum matrix nanocomposite. Ceram Int. 2020;46(11):19256–19263.
  • Yi-Long Y, Yun Z, Hao-Ming Z, et al. Numerical modeling and experimental validation of TiC nanoparticle distribution during the ultrasonic casting process of 2219 aluminum matrix nanocomposites. Front Mater. 2022;9. Art. No. 862601.
  • Kumar A, Pal K, Mula S. Effects of cryo-FSP on metallurgical and mechanical properties of stir cast Al7075-SiC nanocomposites. J Alloys Compd. 2021;852. Art. No. 156925.
  • Singh T, Tiwari SK, Shukla DK. Effects of Al2O3 nanoparticles volume fractions on microstructural and mechanical characteristics of friction stir welded nanocomposites. Nanocomposites. 2020;6(2):76–84.
  • Najjar IR, Elmahdy M. Study of mechanical properties and wear resistance of nanostructured Al 1100/TiO2 nanocomposite processed by accumulative roll bonding. J Compos Mater. 2022;56(17):2727–2738.
  • Shayan M, Eghbali B, Niroumand B. The role of accumulative roll bonding after stir casting process to fabricate high-strength and nanostructured AA2024-(SiO2 + TiO2) hybrid nanocomposite. J Alloys Compd. 2020;845. Art. No. 156281.
  • Jamali A, Mirsalehi SE. Investigation on effects of traverse speed and number of passes on mechanical and abrasive properties of AA7075-T6/ZrO2 surface nanocomposite produced using friction stir processing. Weld World. 2022;66(11):2297–2313.
  • Pratap C, Chandra P, Butola R, et al. Fabrication and characterization of AA6063/B4C metal matrix surface nanocomposite using friction stir processing. ECS J Solid State Sci Technol. 2022;11:3.
  • Zoalfakar SH, Mohamed MA, Hamid MA, et al. Effect of friction stir processing parameters on producing AA6061/ tungsten carbide nanocomposite. Proc Inst Mech Eng E J Process Mech Eng. 2022;236(2):653–667.
  • Patel SK, Nateriya R, Roy BS, et al. Microstructural and mechanical behaviour of WC reinforced particles A3003 surface composite fabricated through friction stir processing. Prot Met Phys Chem Surf. 2020;56(5):998–1007.
  • Huang GQ, Wu J, Hou WT, et al. Microstructural evolution and mechanical behavior of powder metallurgy based SiC/Al-Mg-Sc-Zr nanocomposite subjected to multi-pass friction stir processing. Mater Sci Eng A. 2021;806. Art. No. 140831.
  • Mu DKQ, Zhang Z, Xie YH, et al. The microstructures and mechanical properties of a 5vol%SiC/AA2024 nanocomposite fabricated by powder metallurgy. Mater Charact. 2021;175. Art. No. 111090.
  • Khan A, Abdelrazeq MW, Mattli MR, et al. Structural and mechanical properties of Al-SiC-ZrO2 nanocomposites fabricated by microwave sintering technique. Crystals. 2020;10(10). Art. No. 904.
  • Feijoo I, Merino P, Pena G, et al. Microstructure and mechanical properties of an extruded 6005A Al alloy composite reinforced with TiC nanosized particles and strengthened by precipitation hardening. Metals. 2020;10(8). Art. No. 1050.
  • Madhukar P, Selvaraj N, Gujjala R, et al. Production of high performance AA7150-1% SiC nanocomposite by novel fabrication process of ultrasonication assisted stir casting. Ultrason Sonochem. 2019;58. Art. No. 104665.
  • Yang YL, Jiang RP, Li XQ, et al. Effect of nanoparticle content on the microstructural and mechanical properties of forged and heat-treated TiC/2219 nanocomposites. Metals. 2019;9(9). Art. No. 982.
  • Madhukar P, Selvaraj N, Rao CSP, et al. Tribological behavior of ultrasonic assisted double stir casted novel nano-composite material (AA7150-hBN) using Taguchi technique. Composites B. 2019;175. Art. No. 107136.
  • Tazari H, Siadati MH, Nanocomposites of Al5083/SiC; strength and wear behaviors. Mater Res Express. 2019;6(10):5083.
  • Suresh S, Gowd GH, Kumar M. Mechanical and wear behavior of Al 7075/Al2O3/SiC/mg metal matrix nanocomposite by liquid state process. Adv Compos Hybrid Mater. 2019;2(3):530–539.
  • Salur E, Acarer M, Savkliyildiz I. Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing. Mater Today Commun. 2021;27. Art. No. 102202.
  • Toozandehjani M, Ostovan F, Jamaludin KR, et al. Process-microstructure-properties relationship in Al-CNTs-Al2O3 nanocomposites manufactured by hybrid powder metallurgy and microwave sintering process. Trans Nonferrous Met Soc China. 2020;30(9):2339–2354.
  • Moustafa EB, Abushanab WS, Melaibari A, et al. The effectiveness of incorporating hybrid reinforcement nanoparticles in the enhancement of the tribological behavior of aluminum metal matrix composites. Jom. 2021;73(12):4338–4348.
  • Moustafa EB. Hybridization effect of BN and Al2O3 nanoparticles on the physical, wear, and electrical properties of aluminum AA1060 nanocomposites. Appl Phys A. 2021;127(9). Art. No. 724.
  • Vij V, Agarwal R, Garg MP, et al. Fabrication and mechanical characterization of hybrid composite reinforced with nanoparticles of alumina and zirconia. Polym Compos. 2022;43(10):7315–7325.
  • Manohar G, Pandey KM, Maity SR. Effect of spark plasma sintering on microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nanocomposite fabricated by powder metallurgy techniques. Mater Chem Phys. 2022;282. Art. No. 126000.
  • Moustafa EB, Mikhaylovskaya AV, Taha MA, et al. Improvement of the microstructure and mechanical properties by hybridizing the surface of AA7075 by hexagonal boron nitride with carbide particles using the FSP process. J Mater Res Technol. 2022;17:1986–1999.
  • Mohammed AS, Aljebreen OS, Hakeem AS, et al. Tribological behavior of aluminum hybrid nanocomposites reinforced with alumina and graphene oxide. Materials. 2022;15(3). Art. No. 865.
  • Reihanian M, Bagherpour E, Paydar MH. Particle distribution in metal matrix composites fabricated by accumulative roll bonding. Mater Sci Technol. 2012;28(1):103–108.
  • Madhukar P, Mishra V, Selvaraj N, et al. Influence of ultrasonic vibration towards the microstructure refinement and particulate distribution of AA7150-B4C nanocomposites. Coatings. 2022;12(3). Art. No. 365.
  • Yang YL, Zhang Y, Zhang HM, et al. Effect of TiC nanoparticle on friction and wear properties of TiC/AA2219 nanocomposites and its strengthening mechanism. J Cent South Univ. 2022;29(3):767–779.
  • Sharma A, Mishra P. Effect of T6, RRA and nano chromium carbide content on microstructure and mechanical properties of AA7075-Cr3C2 nanocomposite. Part Sci Technol. 2022;40(8):1017–1032.
  • Kumar A, Rana RS, Purohit R. Microstructure evolution, mechanical properties, and fractography of AA7068/ Si3N4 nanocomposite fabricated thorough ultrasonic-assisted stir casting advanced with bottom pouring technique. Mater Res Express. 2022;9(1). Art. No. 015009.
  • Mohammed AS, Alahmari TS, Laoui T, et al. Mechanical and thermal evaluation of aluminum hybrid nanocomposite reinforced with alumina and graphene oxide. Nanomaterials. 2021;11(5). Art. No. 1225.
  • Zhu JW, Jiang WM, Li GY, et al. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J Mater Process Technol. 2020;283. Art. No. 116699.
  • Ghasali E, Alizadeh M, Ebadzadeh T. TiO2 ceramic particles-reinforced aluminum matrix composite prepared by conventional, microwave, and spark plasma sintering. J Compos Mater. 2018;52(19):2609–2619.
  • Ghasali E, Shirvanimoghaddam K, Alizadeh M, et al. Ultra-low temperature fabrication of vanadium carbide reinforced aluminum nano composite through spark plasma sintering. J Alloys Compd. 2018;753:433–445.
  • Alem SAA, Latifi R, Angizi S, et al. Development of metal matrix composites and nanocomposites Via double-pressing double-sintering (DPDS) method. Mater Today Commun. 2020;25. Art. No. 101245 (& references herewith).
  • Ghasemi MJ, Silani M, Maleki A, et al. Micromechanical simulation and experimental investigation of aluminum-based nanocomposites. Def Technol. 2021;17(1):196–201.
  • Suganeswaran K, Parameshwaran R, Mohanraj T, et al. Influence of secondary phase particles Al2O3/SiC on the microstructure and tribological characteristics of AA7075-based surface hybrid composites tailored using friction stir processing. Proc Inst Mech Eng C J Mech Eng Sci. 2021;235(1):161–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.