331
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and tensile strength of electrodeposited Fe-rich bcc FeCoNi medium-entropy alloys

ORCID Icon, , & ORCID Icon
Pages 2028-2034 | Received 05 Aug 2022, Accepted 01 Mar 2023, Published online: 15 Mar 2023

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218.
  • Inui H, Kishida K, Chen Z. Recent progress in our understanding of phase stability, atomic structures and mechanical and functional properties of high-entropy alloys. Mater Trans. 2022;63:394–401.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4:515–534.
  • Miracle D, Senkov O. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Ye Y, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2016;19:349–362.
  • Fu A, Liu B, Xu S, et al. Mechanical properties and microstructural evolution of a novel (FeCoNi)86.93Al6.17Ti6.9 medium entropy alloy fabricated via powder metallurgy technique. J Alloy Compd. 2021;860:158460.
  • Lv J, Yu H, Fang W, et al. Manipulation of precipitation and mechanical properties of precipitation-strengthened medium-entropy alloy. Scr Mater. 2023;222:115057.
  • Malladi SBA, Cordova L, Guo S, et al. Laser-based powder bed fusion of dispersion strengthened CoCrNi by ex-situ addition of TiN. Proc CIRP. 2022;111:368–372.
  • Yusenko KV, Riva S, Carvalho PA, et al. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr Mater. 2017;138:22–27.
  • Zhao YY, Lei ZF, Lu ZP, et al. A simplified model connecting lattice distortion with friction stress of Nb-based equiatomic high-entropy alloys. Mater Res Lett. 2019;7:340–346.
  • Yoshida S, Ikeuchi T, Bhattacharjee T, et al. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys. Acta Mater. 2019;171:201–215.
  • Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of fcc-structured multi-component equiatomic solid solution alloys Intermetallics. 2014;46:131–140.
  • Barron PJ, Carruthers AW, Dawson H, et al. Phase stability of V-based multi-principal element alloys. Mater Sci Technol. 2022;38:926–939.
  • Ding XX, Wang J, Liu D, et al. Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy. Rare Met. 2022;41:2894–2905.
  • Chu CL, Chen WP, Liu JC, et al. Achieving strength–ductility synergy in a non-equiatomic Cr10Co30Fe30Ni30 high-entropy alloy with heterogeneous grain structures. Rare Met. 2022;41:2864–2876.
  • Shukla S, Choudhuri D, Wang T, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy. Mater Res Lett. 2018;6:676–682.
  • Zhou Y, Jin X, Du XY, et al. Comparison of the structure and properties of equiatomic and non-equiatomic multicomponent alloys. Mater Sci Technol. 2018;34:988–991.
  • Orlov D, Ameyama K. Critical assessment 37: harmonic-structure materials – idea, status and perspectives. Mater Sci Technol. 2020;36:517–526.
  • Yin F, Hu S, Xu R, et al. Ultrastrong medium entropy alloy with simultaneous strength-ductility improvement via heterogeneous nanocrystalline structures. Mater Sci Eng A. 2021;823:141631.
  • Erb U. Electrodeposited nanocrystals: synthesis, properties and industrial applications. Nanostruct Mater. 1995;6:533–538.
  • Wasekar NP, Haridoss P, Seshadri S, et al. Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Surf Coat Technol. 2016;291:130–140.
  • Watanabe A, Yamamoto T, Takigawa Y. Tensile strength of nanocrystalline FeCoNi medium-entropy alloy fabricated using electrodeposition. Sci Rep. 2022;12:12076.
  • Fedot’ev N, Vyacheslavov P. The phase structure of binary alloys produced by electrodeposition. Plating (East Orange NJ). 1970;57:700–706.
  • Haché MJR, Tam J, Erb U, et al. Electrodeposited nanocrystalline medium-entropy alloys – an effective strategy of producing stronger and more stable nanomaterials. J Alloys Compd. 2022;899:163233.
  • Girin OB. Review – electrochemical phase formation via a supercooled liquid state stage: metastable structures and intermediate phases. J Electrochem Soc. 2022;169:092511.
  • Matsui I, Watanabe A, Takigawa Y, et al. Microstructural heterogeneity in the electrodeposited Ni: insights from growth modes. Sci Rep. 2019;10:5548.
  • Watanabe A, Takigawa Y. Reducing sulfur to improve thermal embrittlement in electrodeposited nickel using citric acid. Res Surf Interf. 2020;1:100001.
  • Haynes WM. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. 97th ed. CRC Press; 2016.
  • Köster W, Haehl WD. Das Realschaubild und die Gleichgewichtseinstellung im Dreistoffsystem Eisen–Kobalt–Nickel. Arch Eisenhüttenwes. 1969;40:569–574.
  • Xia CH, Wang Y, Wang JJ, et al. Thermodynamic assessment of the Co–Fe–Ni system and diffusion study of its fcc phase. J Alloys Compd. 2021;853:157165.
  • Lábár JL. Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy. 2005;103:237–249.
  • JCPDS International Centre for Diffraction Data. Selected powder diffraction data for metals and alloys: data book, Vol. 1, 1st ed. Pennsylvania (PA): JSPDS; 1978. p. 178. File No. 6-696.
  • JCPDS International Centre for Diffraction Data. Selected powder diffraction data for metals and alloys: data book, Vol. 1, 1st ed. Pennsylvania (PA): JSPDS; 1978. p. 375. File No. 23-297.
  • Izaki M. Preparation of non-equilibrium phases by electrochemical reactions and the thermal phase transformation. J Surf Finish Soc Jpn. 2014;65:112–117.
  • Osaka T, Takai M, Hayashi K, et al. A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature. 1998;392:796–798.
  • Günen A, Kurt B, Somunkιran İ, et al. The effect of process conditions in heat-assisted boronizing treatment on the tensile and bending strength characteristics of the AISI-304 austenitic stainless steel. Phys Met Metallogr. 2015;116:896–907.
  • Brooks I, Palumbo G, Hibbard GD, et al. On the intrinsic ductility of electrodeposited nanocrystalline metals. J Mater Sci. 2011;46:7713–7724.
  • Li P, Wang A, Liu CT. A ductile high entropy alloy with attractive magnetic properties. J Alloy Compd. 2017;694:55–60.
  • Sharon JA, Padilla HA II, Boyce BL. Interpreting the ductility of nanocrystalline metals. J Mater Res. 2013;28:1539–1552.
  • Zhang Y, Zuo T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci Rep. 2013;3:1455.
  • Zuo TT, Ren SB, Liaw PK, et al. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int J Miner Metall Mater. 2013;20:549–555.
  • Schils HW, Atanassov N. Importance of the texture index for nickel electrodeposits. Trans IMF. 1973;95:37–40.
  • Matsui I, Takigawa Y, Uesugi T, et al. Effect of orientation on tensile ductility of electrodeposited bulk nanocrystalline Ni–W alloys. Mater Sci Eng A. 2013;578:318–322.
  • Shafiei A. Simple approach to model the strength of solid-solution high entropy alloys in Co-Cr-Fe-Mn-Ni system. Strength Mater. 2022;54:705–716.
  • Jin K, Gao YF, Bei H. Intrinsic properties and strengthening mechanism of monocrystalline Ni-containing ternary concentrated solid solutions. Mater Sci Eng A. 2017;695:74–79.
  • Moussa C, Bernacki M, Besnard R, et al. Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy. 2017;179:63–72.
  • Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738–2746.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.