911
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling deformation-induced martensite transformation in high-carbon steels

, , &
Pages 2035-2049 | Received 13 Oct 2022, Accepted 01 Mar 2023, Published online: 23 Mar 2023

References

  • Dommarco RC, Kozaczek KJ, Bastias PC, et al. Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading. Wear. 2004;257:1081–1088.
  • Shen Y, Moghadam SM, Sadeghi F, et al. Effect of retained austenite–compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel. Int J Fatigue. 2015;75:135–144.
  • Sidoroff C, Perez M, Dierickx P, et al. Advantages and shortcomings of retained austenite in bearing steels: A review, Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings. (2015).
  • Bedekar V, Voothaluru R, Yu D, et al. Effect of nickel on the kinematic stability of retained austenite in carburized bearing steels – In-situ neutron diffraction and crystal plasticity modeling of uniaxial tension tests in AISI 8620, 4320 and 3310 steels. Int J Plast. 2020;131:1–16.
  • Voothaluru R, Bedekar V, Xie Q, et al. In-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in bearing steels. Mater Sci Eng A. 2018;711:579–587.
  • Foster D, Paladugu M, Hughes J, et al. Comparative micromechanics assessment of high-carbon martensite/bainite bearing steel microstructures using in-situ synchrotron X-ray diffraction. Materialia (Oxf). 2020;14:100948.
  • Voothaluru R, Bedekar V, Yu D, et al. Investigating the difference in mechanical stability of retained austenite in bainitic and martensitic high-carbon bearing steels using in situ neutron diffraction and crystal plasticity modeling. Metals (Basel). 2019;9:482–498.
  • Blondé R, Jimenez-Melero E, Zhao L, et al. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Mater. 2012;60:565–577.
  • Alley ES, Neu RW. A hybrid crystal plasticity and phase transformation model for high carbon steel. Comput Mech. 2013;52:237–255.
  • Haidemenopoulos GN, Vasilakos AN. On the thermodynamic stability of retained austenite in 4340 steel. J Alloys Compd. 1997;247:128–133.
  • Haidemenopoulos GN, Vasilakos AN. Modelling of austenite stability in low-alloy triple-phase steels. Steel Res. 1996;67:513–519.
  • Behera AK, Olson GB. Prediction of carbon partitioning and austenite stability via non-equilibrium thermodynamics in Quench and Partition (Q&P) steel. JOM. 2019;71:1375–1385.
  • Haidemenopoulos GN, Grujicic M, Olson GB, et al. Thermodynamics-based alloy design criteria for austenite stabilization and transformation toughening in the Fe-Ni-Co system. J Alloys Compd. 1995;220:142–147.
  • Olson GB, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A. 1975;6A:791–795.
  • Das A, Chakraborti PC, Tarafder S, et al. Analysis of deformation induced martensitic transformation in stainless steels. Mater Sci Technol. 2011;27:366–370.
  • Tamura I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met Sci. 1982;16:245–253.
  • Xiong XC, Chen B, Huang MX, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr Mater. 2013;68:321–324.
  • Hidalgo J, Findley KO, Santofimia MJ. Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering. Mater Sci Eng A. 2017;690:337–347.
  • Jacques PJ, Delannay F, Ladrière J. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Mater Trans A. 2001;32:2759–2768.
  • Bhadeshia H. Steels for bearings. Prog Mater Sci. 2012;57:268–435.
  • Haidemenopoulos GN, Aravas N, Bellas I. Kinetics of strain-induced transformation of dispersed austenite in low-alloy TRIP steels. Mater Sci Eng A. 2014;615:416–423.
  • Olson GB. Effects of stress and deformation on martensite formation. In: K Buschow, R Cahn, M Flemings, B Ilschner, E Kramer, S Mahajan, P Veyssière, editor. Encyclopedia of materials: science and technology. Oxford: Elsevier; 2001. p. 2381–2384.
  • Olson GB, Cohen M. A general mechanism of martensitic nucleation: part I. General concepts and the FCC → HCP transformation. Metall Trans A. 1976;7:1897–1904.
  • Olson GB, Cohen M. A general mechanism of martensitic nucleation: part II. FCC → BCC and other martensitic transformations. Metall Trans A. 1976;7:1905–1914.
  • Olson GB, Cohen M. Stress-assisted isothermal martensitic transformation: application to TRIP steels. Metall Trans A. 1982;13:1907–1914.
  • Cohen M, Olson GB. Martensitic nucleation and the role of the nucleating defect, in: First JIM International Symposium on New Aspects of Martensitic Transformation, Suppl. to Trans. JIM, Japan Institute of Metals, 1976: pp. 93–98.
  • Olson GB, Tsuzaki K, Cohen M. Statistical aspects of martensitic nucleation. MRS Proceedings. 1985;57:129.
  • Cech RE, Turnbull D. Heterogeneous nucleation of the martensite transformation. JOM. 1956;8:124–132.
  • Samek L, de Moor E, Penning J, et al. Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels. Metall Mater Trans A. 2006;37:109–124.
  • Polatidis E, Haidemenopoulos GN, Krizan D, et al. The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: experimental investigation and modelling the transformation kinetics. Mater Sci Eng A. 2021;800:140321.
  • Andersson JO, Helander T, Höglund L, et al. Thermo-Calc and DICTRA, computational tools for materials science. CALPHAD. 2002;26:273–312.
  • Ghosh G, Olson GB. Kinetics of FCC→ BCC heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metall Mater. 1994;42:3361–3370.
  • Voothaluru R, Bedekar V, Yu D, et al. Investigating the difference in mechanical stability of retained austenite in bainitic and martensitic high-carbon bearing steels using in situ neutron diffraction and crystal plasticity modeling. Metals (Basel). 2019;9:482.
  • Bhadeshia HKDH. Bainite in steels: theory and practice. 3rd ed. London: CRC Press; 2015.
  • Yan K, Liss K, Timokhina I, et al. In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steel. Mater Sci Eng A. 2016;662:185–197.
  • Jacques PJ. Transformation-induced plasticity for high strength formable steels. Curr Opin Solid State Mater Sci. 2004;8:259–265.
  • Totten GE. Steel heat treatment: metallurgy and technologies. 1st ed. Boca Raton: CRC Press; 2006.
  • Burrier H. Bearing steels. In: Properties and selection: irons, steels, and high-performance alloys. Vol. 1, ASM Handbook, By ASM Handbook Committee. Materials Park, OH: ASM International; 1990. p. 380–388.
  • Neu RW, Sehitoglu H. Stress-induced transformation in a carburized steel—experiments and analysis. Acta Metall Mater. 1992;40:2257–2268.
  • Kulin SA, Cohen M, Averbach BL. Effect of applied stress on the martensitic transformation. JOM. 1952;4:661–668.
  • van Bohemen SMC. Bainite and martensite start temperature calculated with exponential carbon dependence. Mater Sci Technol. 2012;28:487–495.
  • Zhou TP, Wang CY, Wang C, et al. Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel. Mater Sci Eng A. 2020;798:140147.
  • Morris D, Sadeghi F. Retained austenite stability on rolling contact fatigue performance of 8620 case-carburized steel. Fatigue Fract Eng Mater Struct. 2022;45:55–68.
  • Choi J, Lee S, Park Y, et al. High manganese austenitic steel for cryogenic applications, in: The Twenty-Second International Offshore and Polar Engineering Conference, OnePetro, 2012.
  • Krauss G. Microstructures and properties of carburized steels. Heat Treat Irons Steels. 2014;4D:76–87.