120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Conductive and anti-bacterial self-bundled nanofibrous yarns from electrostatic induction of Keggin polyoxometalates

, , , &
Pages 2050-2061 | Received 30 Sep 2022, Accepted 28 Feb 2023, Published online: 21 Mar 2023

References

  • Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298–5415.
  • Richard-Lacroix M, Pellerin C. Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules. 2013;46(24):9473–9493.
  • Lou L, Osemwegie O, Ramkumar SS. Functional nanofibers and their applications. Ind Eng Chem Res. 2020;59(13):5439–5455.
  • Chang G, Li A, Xu X, et al. Twisted polymer microfiber/nanofiber yarns prepared via direct fabrication. Ind Eng Chem Res. 2016;55(25):7048–7051.
  • Bae S, DiBalsi MJ, Meilinger N, et al. Heparin-eluting electrospun nanofiber yarns for antithrombotic vascular sutures. ACS Appl Mater Interfaces. 2018;10(10):8426–8435.
  • Matsumoto H, Imaizumi S, Konosu Y, et al. Electrospun composite nanofiber yarns containing oriented graphene nanoribbons. ACS Appl Mater Interfaces. 2013;5(13):6225–6231.
  • Imaizumi S, Matsumoto H, Konosu Y, et al. Top-down process based on electrospinning, twisting, and heating for producing one-dimensional carbon nanotube assembly. ACS Appl Mater Interfaces. 2011;3(2):469–475.
  • Yang E, Xu Z, Chur LK, et al. Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer. ACS Appl Mater Interfaces. 2017;9(28):24220–24229.
  • Dabirian F, Hosseini Ravandi SA, Pishevar AR, et al. A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J Electrostat. 2011;69(6):540–546.
  • Shuakat MN, Lin T. Direct electrospinning of nanofibre yarns using a rotating ring collector. J Text Inst. 2016;107(6):791–799.
  • Nakashima R, Watanabe K, Lee Y, et al. Mechanical properties of poly(vinylidene fluoride) nanofiber filaments prepared by electrospinning and twisting. Adv Polym Technol. 2013;32(S1):E44–E52.
  • Dabirian F, Ravandi SAH, Sanatgar RH, et al. Manufacturing of twisted continuous pan nanofiber yarn by electrospinning process. Fibers Polym. 2011;12(5):610–615.
  • Wang X, Zhang K, Zhu M, et al. Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments. Macromol Rapid Commun. 2008;29(10):826–831.
  • Tian L, Yan T, Pan Z. Fabrication of continuous electrospun nanofiber yarns with direct 3d processability by plying and twisting. J Mater Sci. 2015;50(21):7137–7148.
  • Hosseini Ravandi SA, Tork R, Dabirian F, et al. Characteristics of yarn and fabric made out of nanofibers. Mater Sci Appl. 2015;6:103–110.
  • Yan H, Liu L, Zhang Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers. Mater Lett. 2011;65(15):2419–2421.
  • Su C-I, Lai T-C, Lu C-H, et al. Yarn formation of nanofibers prepared using electrospinning. Fibers Polym. 2013;14(4):542–549.
  • He J, Qi K, Zhou Y, et al. Multiple conjugate electrospinning method for the preparation of continuous polyacrylonitrile nanofiber yarn. J Appl Polym Sci. 2014;131(8):40137–40143.
  • He J, Zhou Y, Qi K, et al. Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning. Fibers Polym. 2013;14(11):1857–1863.
  • He J-X, Qi K, Zhou Y-M, et al. Fabrication of continuous nanofiber yarn using novel multi-nozzle bubble electrospinning. Polym Int. 2014;63(7):1288–1294.
  • Yang C, Deng G, Chen W, et al. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids Surf B Biointerfaces. 2014;122:270–276.
  • Ali U, Zhou Y, Wang X, et al. Direct electrospinning of highly twisted, continuous nanofiber yarns. J Text Inst. 2012;103(1):80–88.
  • Hohman MM, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. I. stability theory. Phys Fluids. 2001;13(8):2201–2220.
  • Hohman MM, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets. II. applications. Phys Fluids. 2001;13(8):2221–2236.
  • Luedtke WD, Gao J, Landman U. Dielectric nanodroplets: structure, stability, thermodynamics, shape transitions and electrocrystallization in applied electric fields. J Phys Chem C. 2011;115(42):20343–20358.
  • Bharti B, Velev OD. Assembly of reconfigurable colloidal structures by multidirectional field-induced interactions. Langmuir. 2015;31(29):7897–7908.
  • Wang ZL. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano. 2013;7(11):9533–9557.
  • Ha M, Park J, Lee Y, et al. Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano. 2015;9(4):3421–3427.
  • Monti OLA. Understanding interfacial electronic structure and charge transfer: an electrostatic perspective. J Phys Chem Lett. 2012;3(17):2342–2351.
  • Khan U, Kim S-W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano. 2016;10(7):6429–6432.
  • Legg R. Air filters. In: Legg R, editor. Air conditioning system design. Oxford: Butterworth-Heinemann; 2017. p. 213–223.
  • Ko FK, El-Aufy A, Lam H, et al. Electrostatically generated nanofibres for wearable electronics. In: Tao X, editor. Wearable electronics and photonics. Cambridge: Woodhead Publishing; 2005. p. 13–40.
  • McKnight M, Agcayazi T, Ghosh T, et al. Fiber-based sensors: enabling next-generation ubiquitous textile systems. In: Tong RK-Y, editor. Wearable technology in medicine and health care. London: Academic Press; 2018. p. 153–171.
  • Gumerova NI, Rompel A. Synthesis, structures and applications of electron-rich polyoxometalates. Nat Rev Chem. 2018;2(2):0112.
  • Wang C, Chien H-S, Hsu C-H, et al. Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules. 2007;40(22):7973–7983.
  • Jing L, Shim K, Toe CY, et al. Electrospun polyacrylonitrile–ionic liquid nanofibers for superior PM2.5 capture capacity. ACS Appl Mater Interfaces. 2016;8(11):7030–7036.
  • He N, Shan W, Wang J, et al. Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors. J Mater Chem A. 2019;7(12):6869–6876.
  • Lippard SJ, Russ BJ. Reactions of eight-coordinate metal cyanide complexes. I. Molybdenum(IV) and Tungsten(IV) Oxocyanide Complexes. Inorg Chem. 1967;6(11):1943–1947.
  • De Buysser K, Van Driessche I, Vermeir P, et al. EXAFS analysis of blue luminescence in polyoxytungstate citrate gels. Phys Status Solidi B. 2008;245(11):2483–2489.
  • Baker LCW, McCutcheon TP. Heteropoly salts containing cobalt and hexavalent tungsten in the anion. J Am Chem Soc. 1956;78(18):4503–4510.
  • DeGroot HP, Hanusa TP. Cyanide complexes of the transition metals. In: Scott RA, editor. Encyclopedia of inorganic and bioinorganic chemistry. Hoboken, NJ: Wiley; 2020. p. 1–13.
  • Arshad AB TMS, Lin PT, et al. A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv. 2021;11(16):9638–9663.
  • Li D, Yue G, Li S, et al. Fabrication and applications of multi-fluidic electrospinning multi-structure hollow and core–shell nanofibers. Engineering. 2022;13:116–127.
  • Cao X, Ma C, Zhao J, et al. Graphene oxide mediated reduction of silver ions to silver nanoparticles under environmentally relevant conditions: kinetics and mechanisms. Sci Total Environ. 2019;679:270–278.
  • Yeh T-F, Cihlář J, Chang C-Y, et al. Roles of graphene oxide in photocatalytic water splitting. Mater Today. 2013;16(3):78–84.
  • Albiter E, Valenzuela MA, Alfaro S, et al. Photocatalytic deposition of Ag nanoparticles on TiO2: metal precursor effect on the structural and photoactivity properties. J Saudi Chem Soc. 2015;19(5):563–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.