1,278
Views
0
CrossRef citations to date
0
Altmetric
Review

Fabrication of nanostructured electrodes for electrochemical surface-enhanced Raman spectroscopy (E-SERS): a review

ORCID Icon
Pages 2287-2301 | Received 29 Nov 2022, Accepted 27 Mar 2023, Published online: 12 Apr 2023

References

  • Etzioni R, Urban N, Ramsey S, et al. The case for early detection. Nat Rev Cancer. 2003;3:243–252.
  • Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–144.
  • FDA-NIH Biomarker Working Group. Diagnostic biomarker. Silver Spring (MD): Food and Drug Administration (US); 2016.
  • Hoseok I, Cho J-Y. Chapter three—lung cancer biomarkers. In: Makowski GS, editor. Advances in clinical chemistry. Elsevier; 2015. p. 107–170.
  • Simrén J, Elmgren A, Blennow K, et al. Chapter six—fluid biomarkers in Alzheimer’s disease. In: Makowski GS, editor. Advances in clinical chemistry. Elsevier; 2023. p. 249–281.
  • Bravo-Merodio L, Acharjee A, Russ D, et al.. Translational biomarkers in the era of precision medicine. In: Makowski G, editor. Advances in clinical chemistry Vol. 102. Cambridge (MA): Elsevier; 2021. p. 191–232.
  • Higson S. Analytical chemistry. Oxford: Oxford University Press; 2003.
  • Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39:1747.
  • Shao Y, Zhu Y, Zheng R, et al. Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv Compos Hybrid Mater. 2022;5:3104–3116.
  • Ahmed J, Faisal M, Alsareii SA, et al. Highly sensitive and selective non-enzymatic uric acid electrochemical sensor based on novel polypyrrole-carbon black-Co3O4 nanocomposite. Adv Compos Hybrid Mater. 2022;5:920–933.
  • Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60:111–120.
  • Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21:1109.
  • Satpathy G, Chandra GK, Elayaraja D, et al. Nanoparticles and bacterial interaction of host-pathogens and the detection enhancement of biomolecules by fluorescence Raman spectroscopic investigation. Eng Sci. 2022;20:341–351.
  • Yin H, Zhong W, Yin M, et al. Carboxyl-functionalized poly(arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of Fe3+ ions. Adv Compos Hybrid Mater. 2022;5:2031–2041.
  • Cali K, Tuccori E, Persaud KC. Chapter eighteen—gravimetric biosensors. In: Pelosi P, Knoll W, editors. Methods in enzymology. Cambridge (MA): Academic Press; 2020. p. 435–468.
  • Go DB, Atashbar MZ, Ramshani Z, et al. Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective. Anal Methods. 2017;9:4112–4134.
  • Peveler WJ, Yazdani M, Rotello VM. Selectivity and specificity: pros and cons in sensing. ACS Sensors. 2016;1:1282–1285.
  • Langer J, de Aberasturi DJ, Aizpurua J, et al. Present and future of surface-enhanced Raman scattering. ACS Nano. 2019;14:28–117.
  • Vandenabeele P. Practical Raman spectroscopy: an introduction. Chichester: Wiley; 2013.
  • Atkins PW, De Paula J. Physical chemistry. Oxford: Oxford University Press; 2006.
  • Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26:163–166.
  • Wu D-Y, Li J-F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev. 2008;37:1025.
  • Pilot R, Signorini R, Durante C, et al. A review on surface-enhanced Raman scattering. Biosensors. 2019;9:57.
  • Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53:4756–4795.
  • Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta. 2011;706:8–24.
  • Le Ru EC, Etchegoin PG. Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. 1st ed. Boston, MA: Elsevier; 2009.
  • Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36:485–496.
  • Xu H, Aizpurua J, Käll M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318–4324.
  • Chio W-IK, Liu J, Jones T, et al. SERS multiplexing of methylxanthine drug isomers via host–guest size matching and machine learning. J Mater Chem C. 2021;9:12624–12632.
  • Davison G, Jones T, Liu J, et al. Computer-aided design and analysis of spectrally aligned hybrid plasmonic nanojunctions for SERS detection of nucleobases. Adv Mater Technol. 2023:2201400.
  • Zhu W, Esteban R, Borisov AG, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun. 2016;7:11495.
  • Jones T, Davison G, Jeong H-H, et al. Chapter 2. Engineered gold nanoparticles for photothermal applications. In: Ye E, Li Z, editors. Nanoscience & nanotechnology series. Cambridge: Royal Society of Chemistry; 2022. p. 33–80.
  • Kelly KL, Coronado E, Zhao LL, et al. The optical properties of metal nanoparticles:  the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–677.
  • Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys. 2004;120:357–366.
  • Hu J, Jiang R, Zhang H, et al. Colloidal porous gold nanoparticles. Nanoscale. 2018;10:18473–18481.
  • Chen X, Jiang C, Yu S. Nanostructured materials for applications in surface-enhanced Raman scattering. CrystEngComm. 2014;16:9959–9973.
  • Reguera J, Langer J, Aberasturi DJ, et al. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev. 2017;46:3866–3885.
  • Tian Z-Q, Zhang X-M. Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): Early History, Principles, Methods, and Experiments. In: Pletcher D, Tian Z-Q, Williams DE, editors. Developments in electrochemistry. 1st ed. Chichester: Wiley; 2014. p. 113–135.
  • Compton RG, Laborda E, Ward KR, et al. Understanding voltammetry: simulation of electrode processes. London/Singapore: Imperial College Press/Distributed by World Scientific Pub. Co; 2014.
  • Elgrishi N, Rountree KJ, McCarthy BD, et al. A practical beginner’s guide to cyclic voltammetry. J Chem Educ. 2018;95:197–206.
  • Alkire RC, Bartlett PN, Lipkowski J. Advances in Electrochemical Science and Engineering: Nanopatterned and Nanoparticle‐Modified Electrodes. 1st ed. Weinheim: Wiley; 2017.
  • Willets KA. Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering. Curr Opin Electrochem. 2019;13:18–24.
  • Fu B, Van Dyck C, Zaleski S, et al. Single molecule electrochemistry: impact of surface site heterogeneity. J Phys Chem C. 2016;120:27241–27249.
  • Oyamada N, Minamimoto H, Murakoshi K. In situ observation of unique bianalyte molecular behaviors at the gap of a single metal nanodimer structure via electrochemical surface-enhanced Raman scattering measurements. J Phys Chem C. 2019;123:24740–24745.
  • Zhou L, Chen X, Ren G, et al. Electrically tunable SERS based on plasmonic gold nanorod-graphene/ion-gel hybrid structure with a low voltage. Carbon N Y. 2022;187:425–431.
  • Zaleski S, Cardinal MF, Chulhai DV, et al. Toward monitoring electrochemical reactions with dual-wavelength SERS: characterization of rhodamine 6G (R6G) neutral radical species and covalent tethering of R6G to silver nanoparticles. J Phys Chem C. 2016;120:24982–24991.
  • Wang Y-H, Zheng S, Yang W-M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature. 2021;600:81–85.
  • Schlücker S. Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications. Weinheim: Wiley-VCH Verlag; 2011.
  • Tian Z-Q, Ren B, Wu D-Y. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B. 2002;106:9463–9483.
  • Shi R, Liu X, Ying Y. Facing challenges in real-life application of surface-enhanced Raman scattering: design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. J Agric Food Chem. 2018;66:6525–6543.
  • Jing Y, Wang R, Wang Q, et al. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications. Adv Compos Hybrid Mater. 2021;4:885–905.
  • Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2001.
  • Gao P, Gosztola D, Leung L-WH, et al. Surface-enhanced Raman scattering at gold electrodes: dependence on electrochemical pretreatment conditions and comparisons with silver. J Electroanal Chem Interfacial Electrochem. 1987;233:211–222.
  • Wang J, Qiu C, Mu X, et al. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film. Talanta. 2020;210:120631.
  • Martín-Yerga D, Pérez-Junquera A, González-García MB, et al. Quantitative Raman spectroelectrochemistry using silver screen-printed electrodes. Electrochim Acta. 2018;264:183–190.
  • Zhu Z, Yoshikawa H, Saito M, et al. Fabrication of surface-enhanced Raman spectroscopy (SERS)—active electrodes by silver sputtering deposition for electrochemical SERS analysis. Electroanalysis. 2018;30:1432–1437.
  • Ibáñez D, Pérez-Junquera A, González-García MB, et al. Spectroelectrochemical elucidation of B vitamins present in multivitamin complexes by EC-SERS. Talanta. 2020;206:120190.
  • Martín-Yerga D, Pérez-Junquera A, Hernández-Santos D, et al. In situ activation of thick-film disposable copper electrodes for sensitive detection of malachite green using electrochemical surface-enhanced Raman scattering (EC-SERS). Electroanalysis. 2018;30:1095–1099.
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–22.
  • Bastús NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011;27:11098–11105.
  • Chio W-IK, Davison G, Jones T, et al. Quantitative SERS detection of uric acid via formation of precise plasmonic nanojunctions within aggregates of gold nanoparticles and cucurbit[n]uril. JoVE. 2020;164:e61682–e61697.
  • Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86:3391–3395.
  • Cortés E, Etchegoin PG, Le Ru EC, et al. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J Am Chem Soc. 2010;132:18034–18037.
  • Zong C, Chen C-J, Zhang M, et al. Transient electrochemical surface-enhanced Raman spectroscopy: a millisecond time-resolved study of an electrochemical redox process. J Am Chem Soc. 2015;137:11768–11774.
  • Goodall BL, Robinson AM, Brosseau CL. Electrochemical-surface enhanced Raman spectroscopy (E-SERS) of uric acid: a potential rapid diagnostic method for early preeclampsia detection. Phys Chem Chem Phys 2013;15:1382–1388.
  • Zhao L, Blackburn J, Brosseau CL. Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate. Anal Chem. 2015;87:441–447.
  • Smith SR, Seenath R, Kulak MR, et al. Characterization of a self-assembled monolayer of 1-thio-β-d-glucose with electrochemical surface enhanced Raman spectroscopy using a nanoparticle modified gold electrode. Langmuir. 2015;31:10076–10086.
  • Lynk TP, Sit CS, Brosseau CL. Electrochemical surface-enhanced Raman spectroscopy as a platform for bacterial detection and identification. Anal Chem. 2018;90:12639–12646.
  • Robinson AM, Harroun SG, Bergman J, et al. Portable electrochemical surface-enhanced Raman spectroscopy system for routine spectroelectrochemical analysis. Anal Chem. 2012;84:1760–1764.
  • Bindesri SD, Alhatab DS, Brosseau CL. Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) fabric-based plasmonic sensor for point-of-care diagnostics. Analyst. 2018;143:4128–4135.
  • Yu WW, White IM. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst. 2013;138:1020–1025.
  • Robinson AM, Zhao L, Shah Alam MY, et al. The development of ‘fab-chips’ as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications. Analyst. 2015;140:779–785.
  • Jeong H-H, Choi E, Ellis E, et al. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B. 2019;7:3480–3496.
  • Silvestri A, Lay L, Psaro R, et al. Fluidic manufacture of star-shaped gold nanoparticles. Chem Eur J. 2017;23:9732–9735.
  • Wang H, Levin CS, Halas NJ. Nanosphere arrays with controlled Sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc. 2005;127:14992–14993.
  • Smith SR, Lipkowski J. Guided assembly of two-dimensional arrays of gold nanoparticles on a polycrystalline gold electrode for electrochemical surface-enhanced Raman spectroscopy. J Phys Chem C. 2018;122:7303–7311.
  • Dai X, Nekrassova O, Hyde ME, et al. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem. 2004;76:5924–5929.
  • Wang J, Cao X, Li L, et al. Electrochemical seed-mediated growth of surface-enhanced Raman scattering active Au(111)-like nanoparticles on indium tin oxide electrodes. J Phys Chem C. 2013;117:15817–15828.
  • Ye W, Wang D, Zhang H, et al. Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application. Electrochim Acta. 2010;55:2004–2009.
  • Dendisová M., Němečková Z, Člupek M, et al. EC-SERS study of phenolic acids sorption behavior on Au, Ag and Cu substrates—effect of applied potential and metal used. Appl Surf Sci. 2019;470:716–723.
  • Clarke OJR S, Marie GJH, Brosseau CL. Evaluation of an electrodeposited bimetallic Cu/Ag nanostructured screen printed electrode for electrochemical surface-enhanced Raman spectroscopy (EC-SERS) investigations. J Electrochem Soc. 2017;164:B3091–B3095.
  • Tsai M-H, Lin Y-K, Luo S-C. Electrochemical SERS for in situ monitoring the redox states of PEDOT and its potential application in oxidant detection. ACS Appl Mater Interfaces. 2019;11:1402–1410.
  • Dong P, Lin Y, Deng J, et al. Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors. ACS Appl Mater Interfaces. 2013;5:2392–2399.
  • Bian J, Shu S, Li J, et al. Reproducible and recyclable SERS substrates: flower-like Ag structures with concave surfaces formed by electrodeposition. Appl Surf Sci. 2015;333:126–133.
  • Dai X, Compton RG. Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: application to the detection of arsenic(III). Anal Sci. 2006;22:567–570.
  • Ibáñez D, González-García MB, Hernández-Santos D, et al. Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes. Spectrochim Acta Part A. 2021;248:119174.
  • Cheng Z-Q, Li Z-W, Xu J-H, et al. Morphology-controlled fabrication of large-scale dendritic silver nanostructures for catalysis and SERS applications. Nanoscale Res Lett. 2019;14:89.
  • Subhadarshini S, Singh R, Goswami DK, et al. Electrodeposited Cu2O nanopetal architecture as a superhydrophobic and antibacterial surface. Langmuir. 2019;35:17166–17176.
  • Paunovic M, Schlesinger M. Fundamentals of electrochemical deposition. Hoboken (NJ): Wiley; 2006.
  • Su S, Wu Y, Zhu D, et al. On-electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for efficient interfacial DNA assembly and sensitive electrochemical sensing of MicroRNA. Small. 2016;12:3794–3801.
  • Tang S, Meng X, Wang C, et al. Flowerlike Ag microparticles with novel nanostructure synthesized by an electrochemical approach. Mater Chem Phys. 2009;114:842–847.
  • Bian J-C, Chen Z-D, Li Z, et al. Electrodeposition of hierarchical Ag nanostructures on ITO glass for reproducible and sensitive SERS application. Appl Surf Sci. 2012;258:6632–6636.
  • Hulteen JC, Van Duyne RP. Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vacuum Sci Technol A: Vacuum Surfaces Films. 1995;13:1553–1558.
  • Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–297.
  • Zhang X, Yonzon CR, Van Duyne RP. Nanosphere lithography fabricated plasmonic materials and their applications. J Mater Res. 2006;21:1083–1092.
  • Li X, McNaughter PD, O’Brien P, et al. Photoelectrochemical formation of polysulfide at PbS QD-sensitized plasmonic electrodes. J Phys Chem Lett. 2019;10:5357–5363.
  • Zhang X, Hicks EM, Zhao J, et al. Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett. 2005;5:1503–1507.
  • Dick LA, McFarland AD, Haynes CL, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J Phys Chem B. 2002;106:853–860.
  • Zaleski S, Clark KA, Smith MM, et al. Identification and quantification of intravenous therapy drugs using normal Raman spectroscopy and electrochemical surface-enhanced Raman spectroscopy. Anal Chem. 2017;89:2497–2504.
  • Zhang X, Yonzon CR, Duyne RPV. An electrochemical surface-enhanced Raman spectroscopy approach to anthrax detection. Plasmonics: Metal Nanostruct Opt Properties Int Soc Opt Photonics. 2003;5221:82–91.
  • Bartlett PN, Baumberg JJ, Coyle S, et al. Optical properties of nanostructured metal films. Faraday Disc. 2004;125:117.
  • Mahajan S, Abdelsalam M, Suguwara Y, et al. Tuning plasmons on nano-structured substrates for NIR-SERS. Phys Chem Chem Phys 2007;9:104–109.
  • Bassetto VC, Russell AE, Kubota LT, et al. Preparation of copper sphere segment void templates for electrochemical SERS and their use to study the interaction of amino acids with copper under potentiostatic control. Electrochim Acta. 2014;144:400–405.
  • Dong X, Ohnoutek L, Yang Y, et al. Cu/Ag sphere segment void array as efficient surface enhanced Raman spectroscopy substrate for detecting individual atmospheric aerosol. Anal Chem. 2019;91:13647–13657.
  • Abdelsalam ME, Bartlett PN, Baumberg JJ, et al. Electrochemical SERS at a structured gold surface. Electrochem Commun. 2005;7:740–744.
  • Abdelsalam M, Bartlett PN, Russell AE, et al. Quantitative electrochemical SERS of flavin at a structured silver surface. Langmuir. 2008;24:7018–7023.
  • Vezvaie M, Brosseau CL, Lipkowski J. Electrochemical SERS study of a biomimetic membrane supported at a nanocavity patterned Ag electrode. Electrochim Acta. 2013;110:120–132.
  • Peters RF, Gutierrez-Rivera L, Dew SK, et al. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. JoVE. 2015;97:e52712–e52729.
  • Chen Y. Nanofabrication by electron beam lithography and its applications: A review. Microelectronic Engineering. 2015;135:57–72.
  • Prakash S, Yeom J. Advanced fabrication methods and techniques. In: Prakash S, Yeom J, editors. Nanofluidics and Microfluidics. Waltham (MA): Elsevier; 2014. p. 87–170.
  • Abu Hatab NA, Oran JM, Sepaniak MJ. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano. 2008;2:377–385.
  • Ward DR, Grady NK, Levin CS, et al. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007;7:1396–1400.
  • Albarghouthi N, Eisnor MM, Pye CC, et al. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) and computational study of atrazine: toward point-of-need detection of prevalent herbicides. J Phys Chem C. 2022;126:9836–9842.
  • McLeod KER, Lynk TP, Sit CS, et al. On the origin of electrochemical surface-enhanced Raman spectroscopy (EC-SERS) signals for bacterial samples: the importance of filtered control studies in the development of new bacterial screening platforms. Anal Methods. 2019;11:924–929.
  • Zhu Z, Espulgar WV, Yoshikawa H, et al. Electrochemically modulated surface-enhanced Raman spectra of aminoglutethimide (AGI) on a Ag-sputtered electrode. Bull Chem Soc Jpn. 2018;91:1579–1585.
  • Huang C-Y, Hsiao H-C. Integrated EC-SERS chip with uniform nanostructured EC-SERS active working electrode for rapid detection of uric acid. Sensors. 2020;20:7066.
  • Greene BHC, Alhatab DS, Pye CC, et al. Electrochemical-surface enhanced Raman spectroscopic (EC-SERS) study of 6-thiouric acid: a metabolite of the chemotherapy drug azathioprine. J Phys Chem C. 2017;121:8084–8090.
  • Moldovan R, Milenko K, Vereshchagina E, et al. EC-SERS detection of thiabendazole in apple juice using activated screen-printed electrodes. Food Chem. 2022;405:134713.
  • Eisnor MM, McLeod KER, Bindesri S, et al. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS): a tool for the identification of polyphenolic components in natural lake pigments. Phys Chem Chem Phys. 2022;24:347–356.
  • Jahn M, Patze S, Hidi IJ, et al. Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst. 2016;141:756–793.
  • Li J-F, Zhang Y-J, Ding S-Y, et al. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem Rev. 2017;117:5002–5069.
  • Chaudhuri RG, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112:2373–2433.
  • Loiseau A, Asila V, Boitel-Aullen G, et al. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors. 2019;9:78.
  • Hartman T, Wondergem CS, Kumar N, et al. Surface- and tip-enhanced Raman spectroscopy in catalysis. J Phys Chem Lett. 2016;7:1570–1584.
  • Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–453.
  • Jiang H-L, Akita T, Xu Q. A one-pot protocol for synthesis of non-noble metal-based core–shell nanoparticles under ambient conditions: toward highly active and cost-effective catalysts for hydrolytic dehydrogenation of NH3BH3. Chem Commun. 2011;47:10999–11001.
  • Hu Y, Zhang A-Q, Li H-J, et al. Synthesis, study, and discrete dipole approximation simulation of Ag–Au bimetallic nanostructures. Nanoscale Res Lett. 2016;11:209.
  • Liu B, Han G, Zhang Z, et al. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem. 2012;84:255–261.
  • Pande S, Ghosh SK, Praharaj S, et al. Synthesis of normal and inverted gold−silver core−shell architectures in β-cyclodextrin and their applications in SERS. J Phys Chem C. 2007;111:10806–10813.
  • Wu P, Gao Y, Lu Y, et al. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer–silver–gold shell–core nanostructures. Analyst. 2013;138:6501.
  • Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, et al. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Commun. 2016;7:12189.
  • Liu Y, Ma H, Han XX, et al. Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Mater Horiz. 2021;8:370–382.
  • Wu M, Jing T, Tian J, et al. Synergistic effect of silver plasmon resonance and p-n heterojunction enhanced photoelectrochemical aptasensing platform for detecting chloramphenicol. Adv Compos Hybrid Mater. 2022;5:2247–2259.
  • Steinbrück A, Stranik O, Csaki A, et al. Sensoric potential of gold–silver core–shell nanoparticles. Anal Bioanal Chem. 2011;401:1241.
  • Davison G, Yin Y, Jones T, et al. Multi-mode enhanced Raman scattering spectroscopy using aggregation-free hybrid metal/metal-oxide nanoparticles with intrinsic oxygen vacancies. J Mater Chem C. 2023;11:3334–3341.
  • Chirumamilla A, Moise I-M, Cai Z, et al. Lithography-free fabrication of scalable 3D nanopillars as ultrasensitive SERS substrates. Appl Mater Today. 2023;31:101763.
  • Gibbs JG, Mark AG, Lee T-C, et al. Nanohelices by shadow growth. Nanoscale. 2014;6:9457–9466.
  • Liu G, Petrosko SH, Zheng Z, et al. Evolution of Dip-Pen nanolithography (DPN): from molecular patterning to materials discovery. Chem Rev. 2020;120:6009–6047.
  • Kuzyk A, Schreiber R, Fan Z, et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature. 2012;483:311–314.
  • Xu Y, Konrad MP, Trotter JL, et al. Rapid one-pot preparation of large freestanding nanoparticle-polymer films. Small. 2017;13:1602163.
  • Subhadarshini S, Pavitra E, Rama Raju GS, et al. One-dimensional NiSe–Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors. ACS Appl Mater Interfaces. 2020;12:29302–29315.