104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Understanding substrate-driven growth mechanism of copper silicide nanoforms and their applications

ORCID Icon, &
Pages 2341-2352 | Received 15 Dec 2022, Accepted 02 Apr 2023, Published online: 12 Apr 2023

References

  • Chen LJ. Metal silicides: an integral part of microelectronics. JOM. 2005;57:24–30.
  • Hsin CL, He JH, Lee CY, et al. Lateral self-aligned p-type In2O3 nanowire arrays epitaxially grown on Si substrates. Nano Lett. 2007; 7:1799–1803.
  • Vitali L, Ramsey MG, Netzer FP. Nanodot formation on the Si(111)-(7×7) surface by adatom trapping. Phys Rev Lett. 1999;83:316–319.
  • Yoon M, Lin XF, Chizhov I, et al. Self-assembled nanodot arrays on Si(111)−(7×7) surfaces. Phys Rev B. 2001;64:085321-5.
  • Lai MY, Wang YL. Self-organized two-dimensional lattice of magic clusters. Phys Rev B. 2001;64:241404.
  • Wu W, Yu Q, Zhang J, et al. Horizontally aligned Cu5Si polycrystalline nanorods on Si. Appl Phys Lett. 2008;92:253113.
  • Andricacos PC. Copper on-chip interconnections. Electrochem Soc Interface. 1999;8:32–37.
  • Lee CS, Gong H, Liu R, et al. Study of copper silicide retardation effects on copper diffusion in silicon. J Appl Phys. 2001;90:3822–3824.
  • Lim DK, Lee D, Lee H, et al. Electronic properties of self-assembled Pt silicide nanowires on Si(100). Nanotechnology. 2007;18:095706.
  • Fouad OA, Yamazato M, Era M, et al. Preparation and properties of TiSi2 thin films from TiCl4/H2 by plasma enhanced chemical vapor deposition. J Cryst Growth. 2002;234:440–446.
  • Fouad OA, Yamazato M, Ichinose H, et al. Titanium disilicide formation by rf plasma enhanced chemical vapor deposition and film properties. Appl Surf Sci. 2003;206:159–166.
  • Fouad OA, Yamazato M, Nagano M. Investigation of RF power effect on the deposition and properties of PECVD TiSi2 thin film. Appl Surf Sci. 2002;195:130–136.
  • Fouad OA, Yamazato M, Hiroshi A, et al. Formation of titanium silicide thin films on Si(100) substrate by RF plasma CVD. Surf Coat Technol. 2003;169/170:632–635.
  • Fouad OA, Uddin N, Yamazato M, et al. RF-plasma enhanced CVD of TiSi2 thin films: effects of TiCl4 flow rate and RF power. J Cryst Growth. 2003;257:153–160.
  • Fouad OA, Yamazato M, Ahagon H, et al. Effect of in situ H2-plasma cleaning on TiSi2 film properties in plasma enhanced chemical vapor deposition. Mater Lett. 2003;57:2965–2969.
  • Zang YP, Yang L, Lai YH, et al. Formation of ordered two-dimensional nanostructures of Cu on the Si(111)-(7×7) surface. Surf Sci. 2003;531:L378–L382.
  • Sreedharan R, Mohan M, Saini S, et al. Intermediate Cu-O-Si phase in the Cu-SiO2/Si(111) system: growth, elemental, and electrical studies. ACS Omega. 2021;6(37):23826–23836. DOI:10.1021/acsomega.1c02646
  • Amiinu IS, Kapuria N, Adegoke TE, et al. Evolution of hierarchically layered Cu-rich silicide nanoarchitectures. Cryst Growth Des. 2020;20(10):6677–6682.
  • Jung SJ, O’Kelly CJ, Boland JJ. Position controlled growth of single crystal Cu3Si nanostructures. Cryst Growth Des. 2015;15(11):5355–5359. DOI:10.1021/acs.cgd.5b00947
  • Jung SJ, Lutz T, Bell AP, et al. Free-standing, single-crystal Cu3Si nanowires. Cryst Growth Des. 2012;12(6):3076–3081.
  • Nürnberger P, Reinhardt H M, Rhinow D, et al. Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS). Appl Surf Sci. 2017;420:70–76. DOI:10.1016/j.apsusc.2017.05.005
  • Zhang S, Wu J, He Z, et al. Fabrication and characterization of Cu x Si1−x films on Si (111) and Si (100) by pulsed laser deposition. AIP Adv. 2016;6(5):055106. DOI:10.1063/1.4948976
  • Xu K, He Y, Ben L, et al. Enhanced electrochemical performance of Si–Cu–Ti thin films by surface covered with Cu3Si nanowires. J Power Sources. 2015;281:455–460. DOI:10.1016/j.jpowsour.2015.02.023
  • Laracuente AR, Baker LA, Whitman LJ. Copper silicide nanocrystals on hydrogen-terminated Si(001). Surf Sci. 2014;624:52–57. DOI:10.1016/j.susc.2013.12.006
  • Chiu C-H, Huang C-W, Chen J-Y, et al. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties. Nanoscale. 2013;5(11):5086. DOI:10.1039/c3nr33302g
  • Cemin F, Lundin D, Furgeaud C, et al. Epitaxial growth of Cu(001) thin films onto Si(001) using a single-step HiPIMS, process. Sci Rep. 2017;7:1655. DOI:10.1038/s41598-017-01755-8
  • Ong BL, Ong SW, Tok ES. Endotaxial growth of CoSi2 nanowires on Si(001) surface: the influence of surface reconstruction. Surf Sci. 2016;647:84–89.
  • Tripathi JK, Garbrecht M, Kaplan WD, et al. The effect of Fe-coverage on the structure morphology and magnetic properties of α-FeSi2 nanoislands. Nanotechnology. 2012;23:495603.
  • Mahato JC, Das D, Pal A, et al. Sequential growth of self-organized epitaxial FeSi2 and CoSi2 nanostructures on Si(1 1 1)-7 × 7 surfaces. Appl Surf Sci. 2022;572(15):151397.
  • Li S, Cai H, Gan CL, et al. Controlled synthesis of copper-silicide nanostructures. Cryst Growth Des. 2010;10(7):2983–2989.
  • Parajuli O, Kumar N, Kipp D, et al. Carbon nanotube cantilevers on self-aligned copper silicide nanobeams. Appl Phys Lett. 2007;90:173107.
  • Zhang Z, Wong LM, Ong HG, et al. Self-assembled shape- and orientation-controlled synthesis of nanoscale Cu3Si triangles, squares, and wires. Nano Lett. 2008;8:3205–3210.
  • Benouattas N, Mosser A, Bouabellou A. Surface morphology and reaction at Cu/Si interface—effect of native silicon suboxide. Appl Surf Sci. 2006;252:7572–7577. DOI:10.1016/j.apsusc.2005.09.010
  • Kumar N, Parajuli O, Hahm J-i. In situ integration of freestanding zinc oxide nanorods using copper silicide nanobeams. App Phys Lett. 2007;91:143114.
  • Sakhanov ZA, Yorkulov RM, Umirzakov BE. Electronic structure and properties of nanoscale structures created on the surface of a free Si/Cu film system. J Synch Investig. 2021;15:401–403. DOI:10.1134/S1027451021020221
  • Gumarov AI, Rogov AM, Stepanov AL. Formation of Cu nanoparticles and Cu3Si phase in Si by ion implantation. Compos Commun. 2020;21:100415.
  • Benazzouz C, Benouattas N, Bouabellou A. Study of diffusion at surface of multilayered Cu/Au films on monocrystalline silicon. Nucl Inst Meth Phys Res B. 2004;213:519–521.
  • Benouattas N, Osmani L, Salik L, et al. Epitaxial growth of copper silicides by “bilayer” technique on monocrystalline silicon with and without native SiOx. Mat Sci Eng B. 2006;132:283–287.
  • Chang C-A. Formation of copper silicides fromCu(100)/Si(100) and Cu(111)/Si(111) structures. J Appl Phys. 1990;67:566–569.
  • Dodony E, Radnóczi GZ, Dódony I. Low temperature formation of copper rich silicides. Intermetallics. 2019;107:108–115.
  • Benouattas N, Mosser A, Raiser D, et al. Behaviour of copper atoms in annealed Cu/SiOx/Si systems. Appl Surf Sci. 2000;153:79–84.
  • Moulder JF, Stickle WF, Sobol PE, et al. Handbook of X-ray photoelectron spectroscopy: Physical Electronics, Inc. Perkin-Elmer Corp., Norwalk.
  • Sekar K, Kuri G, Satyam PV, et al. Growth and alignment of gold silicide islands on Br-passivated vicinal Si(111) surfaces. Surf Sci. 1995;339:96–104.
  • Srinadhu ES, Harriss JE, Sosolik CE. Shape transitions of Cu3Si islands grown on Si(1 1 1) and Si(1 0 0). Appl Surf Sci. 2019;465:201–206.
  • He Z, Stevens M, Smith DJ, et al. Dysprosium silicide nanowires on Si(110). Appl Phys Lett. 2003;83:5292–5294.
  • Tersoff J, Tromp RM. Shape transition in growth of strained islands: spontaneous formation of quantum wires. Phys Rev Lett. 1993;70:2782–2785.
  • MacLeod JM, Psiachos D, Mark AG, et al. Patterned growth of nanoscale in clusters on the Si(111)-7×7 and Si(111)-Ge(5×5) reconstructions. J Phys. 2007;61:800.
  • Voigtlander B. Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth. Surf Sci Reports. 2001;43:127–254.
  • Voiglander B, Weber T. Growth processes in Si/Si(111) epitaxy observed by scanning tunneling microscopy during epitaxy phys. Rev Lett. 1996;77:3861–3864.
  • Sekar K, Satyam PV, Kuri G, et al. An RBS study on the annealing behaviour of Cu thin films on brominated Si(111) and Si(100) substrates. Nuclear Instrum Methods Phys Res B. 1992;71:308–313.
  • Chromik RR, Neils WK, Cotts EJ. Thermodynamic and kinetic study of solid state reactions in the Cu–Si system. J Appl Phys. 1999;86:4273–4281.
  • Shin DW, Wang SX, Marshall AF, et al. Growth and characterization of copper nanoclusters embedded in SiC matrix. Thin Sol Films. 2005;473:267–271.
  • Corn SH, Falconer JL, Czanderna AW. The copper–silicon interface: composition and interdiffusion. J Vac Sci Technol A. 1988;6:1012–1016.
  • Chakraborty S, Kamila J, Rout B, et al. Shape variation in epitaxial microstructures of gold silicide grown on Br-passivated Si(1 1 1) surfaces. Surf Sci. 2004;549:149–156.
  • Takayanagi K, Tanishiro Y, Takahashi M, et al. Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy. J Vac Sci Tech. 1985;3:1502–1506.
  • Zhang YP, Yong KS, Chan HSO, et al. Formation of copper clusters on a thiophene mediated Si(111)-(7×7)Si(111)-(7×7) surface via molecular anchors. Appl.Phys.Lett. 2006;88:123106.
  • Shklyaev A, Bolotov L, Poborchii V, et al. Properties of three-dimensional structures prepared by Ge dewetting from Si(111) at high temperatures. J Appl Phys. 2015;117:205303.
  • Chadi DJ. Stabilities of single-layer and bilayer steps on Si(001) surfaces. Phys Rev Lett. 1987;59:1691–1694.
  • An T, Yoshimura M, Ono I, et al. Elemental structure in Si(110)-“16×2” revealed by scanning tunneling microscopy. Phys Rev B. 2000;61:3006–3011.
  • Stekolnikov AA, Furthmuller J, Bechstedth F. Long-range surface reconstruction: Si(110)−(16×2). Phys Rev Lett. 2004;93:136104.
  • Shinde DR, Chavan PG, Sen S, et al. Enhanced field-emission from SnO2:WO2.72 nanowire heterostructures. ACS Appl Mater Interfaces. 2010;3(12):4730–4735.
  • Chavan PG, Patil SS, More MA, et al. Field emission studies of Te nanorods grown on Si (111) substrate. Vacuum. 2006;83(11):1307–1310.
  • Wang C-Y, Yuan F-W, Hung Y-C, et al. In-situ TEM and XRD analysis of microstructures changes in solution-grown copper silicide nanowires array for field emitters. J Alloys Compd. 2018;735:2373–2377.
  • Yuan F-W, Wang C-Y, Li G-A, et al. Solution-phase synthesis of single-crystal Cu3Si nanowire arrays on diverse substrates with dual functions as high-performance field emitters and efficient anti-reflective layers. Nanoscale. 2013;5(20):9875. DOI:10.1039/c3nr03045h
  • Jian X, Jiang M, Zhou Z, et al. Gas-Induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers. ACS Nano. 2012;6(10):8611–8619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.