135
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Two aspects of high interfacial strength regarding the cracking behaviour of MCrAlY-coated superalloys

ORCID Icon, ORCID Icon, &
Pages 2353-2362 | Received 25 Aug 2022, Accepted 02 Apr 2023, Published online: 16 Apr 2023

References

  • Liu Y, Ru Y, Zhang H, et al. Coating-assisted deterioration mechanism of creep resistance at a nickel-based single-crystal superalloy. Surf Coat Technol. 2021;406:126668.
  • Wang L, Li DC, Yang JS, et al. Modeling of thermal properties and failure of thermal barrier coatings with the use of finite element methods: a review. J Eur Ceram Soc. 2016;36(6):1313–1331.
  • Qi HY, Yang JS, Yang XG, et al. Low-cycle fatigue behavior of a directionally solidified Ni-based superalloy subjected to gas hot corrosion pre-exposure. Rare Met. 2019;38(3):227–232.
  • Qi HY, Yang JS, Yang XG, et al. Fatigue behavior of uncoated and MCrAlY-coated DS nickel-based superalloys pre-exposed in hot corrosion condition. Rare Met. 2018;37(11):936–941.
  • Yang X, Li S, Qi H. Effect of MCrAlY coating on the low-cycle fatigue behavior of a directionally solidified nickel-base superalloy at different temperatures. Int J Fatigue. 2015;75:126–134.
  • Shi D, Song J, et al. Effect of interface diffusion on low-cycle fatigue behaviors of MCrAlY coated single crystal superalloys. Int J Fatigue. 2020;137:105660.
  • Kowalewski R, Mughrabi H. Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-base superalloy. Mater Sci Eng A. 1998;247(1–2):295–299.
  • Rahmani K, Nategh S. Influence of aluminide diffusion coating on low cycle fatigue properties of Rene 80. Mater Sci Eng A. 2008;486(1):686–695.
  • Admin PA. Isothermal fatigue of an aluminide-coated single-crystal superalloy: part II. effects of brittle precracking. Metall Mater Trans A. 1996;27(2):353–361.
  • Martin J, Karel O, Simona P, et al. Effect of Al–Si diffusion coating on the fatigue behavior of cast inconel 713LC at 800°C. Procedia Eng. 2010;2(1):1983–1989.
  • Sulák I, Obrtlík K, Celko L, et al. Low cycle fatigue performance of Ni-based superalloy coated with complex thermal barrier coating. Mater Charact. 2018;139:347–354.
  • Rhys-Jones TN, Cunningham TP. The influence of surface coatings on the fatigue behaviour of aero engine materials. Surf Coat Technol. 1990;42(1):13–19.
  • Na T, Zhang L, Ying T, et al. Effect of temperature gradient on microstructure evolution in Ni–Al–Cr bond coat/substrate systems: a phase-field study. Surf Coat Technol. 2015;261:364–374.
  • Parlikar C, Satyanarayana DV, Chatterjee D, et al. Effect of Pt-aluminide bond coat on tensile and creep behavior of a nickel-base single crystal superalloy. Mater Sci Eng A. 2015;639:575–584.
  • Mencik J. Mechanics of components with treated or coated surface. Springer Science & Business Media; 2013.
  • Ghadami F, Sabour Rouh Aghdam A, Ghadami S. A comprehensive study on the microstructure evolution and oxidation resistance of conventional and nanocrystalline MCrAlY coatings. Sci Rep. 2021;11(1):875.
  • Ghadami F, Aghdam ASR, Ghadami S. Mechanism of the oxide scale formation in thermally-sprayed NiCoCrAlY coatings modified by CeO2 nanoparticles. Mater Today Commun. 2020;24:101357.
  • Ghadami F, Aghdam ASR, Ghadami S. Microstructural characteristics and oxidation behavior of the modified MCrAlX coatings: a critical review. Vacuum. 2021;185:109980.
  • Zhang WX, Fan XL, Wang TJ. The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect. Appl Surf Sci. 2011;258(2):811–817.
  • Wang L, Yang JS, Ni JX, et al. Influence of cracks in APS-TBCs on stress around TGO during thermal cycling: a numerical simulation study. Surf Coat Technol. 2016;285:98–112.
  • Rehman H, Ahmed F, Schmid C, et al. Study on the deformation mechanics of hard brittle coatings on ductile substrates using in-situ tensile testing and cohesive zone FEM modeling. Surf Coat Technol. 2012;207:163–169.
  • Kyaw S, Jones A, Jepson MAE, et al. Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings. Mater Des. 2017;125:189–204.
  • Song J, Li S, Yang X, et al. Numerical study on the competitive cracking behavior in TC and interface for thermal barrier coatings under thermal cycle fatigue loading. Surf Coat Technol. 2019;358:850–857.
  • Song J, Qi H, Li S, et al. A diffusion-coupled cohesive element model for cracking analysis of thermal barrier coatings. Eng Fract Mech. 2021;246:107625.
  • Song J, Qi H, Shi D, et al. Effect of non-uniform growth of TGO layer on cracking behaviors in thermal barrier coatings: a numerical study. Surf Coat Technol. 2019;370:113–124.
  • Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modell Simul Mater Sci Eng. 1993;1(2):111–132.
  • Roe KL, Siegmund T. An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng Fract Mech. 2003;70(2):209–232.
  • Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999;45(5):601–620.
  • Abaqus G. Abaqus 6.11. Providence, RI: Dassault Systemes Simulia Corporation; 2011.
  • Texier D, Monceau D, Crabos F, et al. Tensile properties of a non-line-of-sight processed β-γ-γ′ MCrAlY coating at high temperature. Surf Coat Technol. 2017;326:28–36.
  • Xiong X, Quan D, Dai P, et al. Tensile behavior of nickel-base single-crystal superalloy DD6. Mater Sci Eng A. 2015;636:608–612.
  • Jiang J, Wang W, Zhao X, et al. Numerical analyses of the residual stress and top coat cracking behavior in thermal barrier coatings under cyclic thermal loading. Eng Fract Mech. 2018;196:191–205.
  • Białas M. Finite element analysis of stress distribution in thermal barrier coatings. Surf Coat Technol. 2008;202(24):6002–6010.
  • Thornton J, Slater S, Almer J. The measurement of residual strains within thermal barrier coatings using high-energy X-ray diffraction. J Am Ceram Soc. 2005;88(10):2817–2825.
  • Liu Y, Persson C, Wigren J. Experimental and numerical life prediction of thermally cycled thermal barrier coatings. J Therm Spray Technol. 2004;13(3):415–424.
  • Zhao LG, Tong J, Vermeulen B, et al. On the uniaxial mechanical behaviour of an advanced nickel base superalloy at high temperature. Mech Mater. 2001;33(10):593–600.
  • Zhao LG, Tong J. A viscoplastic study of crack-tip deformation and crack growth in a nickel-based superalloy at elevated temperature. J Mech Phys Solids. 2008;56(12):3363–3378.
  • Sun CT, Jin ZH. Fracture mechanics. Waltham (MA): Academic Press; 2012.
  • Hongbo G, Huibin X, Shengkai G, et al. Effect of surface strengthening on high temperature oxidation and bonding strength of EB-PVD thermal barrier coating. Rare Met Mater Eng. 2001;30(4):314–317.
  • Geng R, Zhou BZ, Qi HY, et al. The bonding strength and failure modes of thermal barrier coatings. J Aerosp Power. 2004;19(1):50–53.
  • Aktaa J, Sfar K, Munz D. Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Mater. 2005;53(16):4399–4413.
  • Rösler J, Bäker M, Aufzug K. A parametric study of the stress state of thermal barrier coatings: part I: creep relaxation. Acta Mater. 2004;52(16):4809–4817.
  • Chen H, Jackson GA, Sun W. An overview of using small punch testing for mechanical characterization of MCrAlY bond coats. J Therm Spray Technol. 2017;26(6):1222–1238.
  • Gong X, Yang Y, Ma Y, et al. Microstructures and mechanical properties of β-NiAlHf coated single crystal superalloy. Mater Sci Eng A. 2016;673:39–46.
  • Liu Y, Qi H, Song J, et al. Low-cycle fatigue of MCrAlY-coated superalloys: a fracture mechanics-based analysis. Mater Sci Technol. 2021;37(2):151–161.
  • Bai Y, Guo T, Wang J, et al. Stress-sensitive fatigue crack initiation mechanisms of coated titanium alloy. Acta Mater. 2021;217:117179.
  • Okazaki M, Okamoto M, Harada Y. Interfacial fatigue crack propagation in Ni-base superalloy protective coatings. Fatigue Fract Eng Mater Struct. 2001;24(12):855–865.
  • Guo D, Zhao L, Jodoin B. Cold spray for production of in-situ nanocrystalline MCrAlY coatings – part II: isothermal oxidation performance. Surf Coat Technol. 2021;409:126828.
  • Madani K, Belhouari M, Bouiadjra BB, et al. Crack deflection at an interface of alumina/metal joint: a numerical analysis. Comput Mater Sci. 2007;38(4):625–630.
  • Sun CT, Jih CJ. On strain energy release rates for interfacial cracks in bi-material media. Eng Fract Mech. 1987;28(1):13–20.
  • Stekovic S. Low cycle fatigue and fracture of a coated superalloy CMSX-4[C]//Fracture of nano and engineering materials and structures. Proceedings of the 16th European Conference of Fracture; 2006 July 3–7; Greece, Alexandroupolis. Netherlands: Springer; 2006. p. 275–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.