269
Views
1
CrossRef citations to date
0
Altmetric
Review

Metal oxide-based materials as an emerging platform for fuel cell system: a review

, &
Pages 2363-2397 | Received 27 Dec 2022, Accepted 01 Apr 2023, Published online: 04 May 2023

References

  • Ding D, Li X, Lai SY, et al. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci. 2014;7(2):552–575.
  • Kim YS, Pivovar BS. Polymer electrolyte membranes for direct methanol fuel cells. Adv Fuel Cells. 2007;1:187–234.
  • Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43–51.
  • Zhang Z, Liu J, Gu J, et al. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci. 2014;7(8):2535–2558.
  • Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821–1871.
  • Yoon Y, Truong PL, Lee D, et al. Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci Au. 2021;2(2):64–92.
  • Chen Z, Higgins D, Yu A, et al. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci. 2011;4(9):3167–3192.
  • Zhang N, Zhang S, Zhu T, et al. Application of metal oxides in electrocatalysts for low temperature fuel cells. Prog Chem. 2011;23(11):2240.
  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48(5-8):53–229.
  • Gupta SM, Tripathi M. A review of TiO 2 nanoparticles. Chin Sci Bull. 2011;56:1639–1657.
  • Barnard AS, Zapol P. Effects of particle morphology and surface hydrogenation on the phase stability of Ti O 2. Phys Rev B. 2004;70(23):235403.
  • Morkoç H, Özgür Ü. Zinc oxide: fundamentals, materials and device technology. Berlin: John Wiley & Sons; 2008.
  • Klingshirn C. Zno: material, physics and applications. ChemPhysChem. 2007;8(6):782–803.
  • Mäki-Jaskari MA, Rantala TT. Band structure and optical parameters of the SnO 2 (110) surface. Phys Rev B. 2001;64(7):075407.
  • Muhammad ID, Awang M, Mamat O, et al. Estimating Young’s modulus of single-walled zirconia nanotubes using nonlinear finite element modeling. J Nanomater. 2015;16(1):8–8.
  • Banerjee S, Mukhopadhyay P. Phase transformations: examples from titanium and zirconium alloys. Mumbai: Elsevier; 2010.
  • Nicholls RJ, Ni N, Lozano-Perez S, et al. Crystal structure of the ZrO phase at zirconium/zirconium oxide interfaces. Adv Eng Mater. 2015;17(2):211–215.
  • Dercz G, Prusik K, Pajak L. X-ray and SEM studies on zirconia powders. J Achiev Mater Manuf Eng. 2008;31(2):408–414.
  • Dontsova TA, Nahirniak SV, Astrelin IM. Metaloxide nanomaterials and nanocomposites of ecological purpose. J Nanomater. 2019;2019:1–31.
  • Han Y, Zhu J. Surface science studies on the zirconia-based model catalysts. Top Catal. 2013;56:1525–1541.
  • Zhang Z, Yates JT. Defects on TiO 2—key pathways to important surface processes. Defects Oxide Surf. 2015;58: 81–121.
  • Oviedo López J, San Miguel Barrera MÁ, Fernández Sanz J. Oxygen vacancies on TiO2 (110) from first principles calculations. J Chem Phys. 2004;121(15):7427–7433.
  • Abu-Dief AM. Development of metal oxide nanoparticles as semiconductors. J Nanotechnol Nanomater. 2020;1(1):5–10.
  • Srivastava, AK. (Ed.). Oxide nanostructures: Growth, microstructures, and properties (1st ed.). Jenny Stanford Publishing; 2013, p. 424.
  • Nagy J, Oláh J, Erdei E, et al. The role and impact of industry 4.0 and the internet of things on the business strategy of the value chain—the case of Hungary. Sustainability. 2018;10(10):3491.
  • Garino N, Zeng J, Castellino M, … Cicero G. Facilely synthesized nitrogen-doped reduced graphene oxide functionalized with copper ions as electrocatalyst for oxygen reduction. npj 2D Mater Appl. 2021;5(1):2.
  • Parkash A. Metal-organic framework derived ultralow-loading platinum-copper catalyst: a highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions. Nanotechnology. 2021;32(32):325703.
  • Lavacchi A, Bellini M, Berretti E, et al. Titanium dioxide nanomaterials in electrocatalysis for energy. Curr Opin Electrochem. 2021;28:100720.
  • Holade Y, Sahin NE, Servat K, et al. Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells. Catalysts. 2015;5(1):310–348.
  • Graves JE, Pletcher D, Clarke RL, et al. The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of metal coatings. J Appl Electrochem. 1991;21:848–857.
  • Zakaria Z, Kamarudin SK, Timmiati SN. Membranes for direct ethanol fuel cells: an overview. Appl Energy. 2016;163:334–342.
  • Nazari P, Gharibzadeh S, Ansari F, et al. Facile green deposition of nanostructured porous NiO thin film by spray coating. Mater Lett. 2017;190:40–44.
  • Kumar RV, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater. 2000;12(8):2301–2305.
  • An WJ, Thimsen E, Biswas P. Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology. J Phys Chem Lett. 2010;1(1):249–253.
  • Zikalala N, Matshetshe K, Parani S, et al. Biosynthesis protocols for colloidal metal oxide nanoparticles. Nano-Struct Nano-Objects. 2018;16:288–299.
  • Bodaghi M, Mirhabibi A, Tahriri M, et al. Mechanochemical assisted synthesis and powder characteristics of nanostructure ceramic of α-Al2O3 at room temperature. Mater Sci Eng: B. 2009;162(3):155–161.
  • Johnston GP, Muenchausen R, Smith DM, et al. Reactive laser ablation synthesis of nanosize alumina powder. J Am Ceram Soc. 1992;75(12):3293–3298.
  • Tok AIY, Boey FYC, Zhao XL. Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. J Mater Process Technol. 2006;178(1-3):270–273.
  • Pivkina A, Ivanov D, Frolov Y, et al. Plasma synthesized nano-aluminum powders: structure, thermal properties and combustion behavior. J Therm Anal Calorim. 2006;86(3):733–738.
  • Kamata K, Mochizuki T, Matsumoto S, et al. Preparation of submicrometer A12O3 powder by gas-phase oxidation of Tris (acetylacetonato) aluminum (111). J Am Ceram Soc. 1985;68(8):C-193.
  • Wang X, Lu G, Guo Y, et al. Preparation of high thermal-stabile alumina by reverse microemulsion method. Mater Chem Phys. 2005;90(2-3):225–229.
  • Xu J, Sun J, Wang Y, et al. Application of iron magnetic nanoparticles in protein immobilization. Molecules. 2014;19(8):11465–11486.
  • D’Souza L, Richards R. Synthesis of metal-oxide nanoparticles: liquid–solid transformations. In: Synthesis, properties, and applications of oxide nanomaterials. Hoboken, NJ: John Wiley & Sons, Inc; 2007. p. 81–117.
  • Rahmanpour O, Shariati A, Nikou MRK. New method for synthesis nano size [gamma]-Al2O3 catalyst for dehydration of methanol to dimethyl ether. Int J Chem Eng Appl. 2012;3(2):125.
  • Janjua MRSA. Synthesis of Co3O4 nano aggregates by Co-precipitation method and its catalytic and fuel additive applications. Open Chem. 2019;17(1):865–873.
  • Nguefack M, Popa AF, Rossignol S, et al. Preparation of alumina through a sol–gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite. Phys Chem Chem Phys. 2003;5(19):4279–4289.
  • Barnes CE. Chemistry of advanced materials: an overview. J Chem Edu. 2000;77:1127.
  • Levy D, Zayat M. (Eds.). The sol-gel handbook, 3 volume set: synthesis, characterization, and applications (Vol. 1). Madrid: John Wiley & Sons; 2015.
  • Thiagarajan S, Sanmugam A, Vikraman D. Facile methodology of sol-gel synthesis for metal oxide nanostructures. Recent Appl Sol-Gel Synth. 2017;1: 1–17.
  • Livage J, Ganguli D. Sol–gel electrochromic coatings and devices: a review. Sol Energy Mater Sol Cells. 2001;68(3-4):365–381.
  • Kandasamy S, Prema RS. Methods of synthesis of nano particles and its applications. J Chem Pharm Res. 2015;7(3):278–285.
  • Santiago EI, Matos BR, Fonseca FC, et al. Performance of Nafion-TiO2 hybrids produced by sol-gel process as electrolyte for PEMFC operating at high temperatures. ECS Trans. 2007;11(1):151.
  • Barth S, Hernandez-Ramirez F, Holmes JD, et al. Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci. 2010;55(6):563–627.
  • Mishra D, Anand S, Panda RK, et al. Hydrothermal preparation and characterization of boehmites. Mater Lett. 2000;42(1-2):38–45.
  • Byrappa K, Yoshimura M. Handbook of hydrothermal technology. New York (NY): William Andrew; 2012.
  • Sigwadi R, Dhlamini M, Mokrani T, et al. Preparation of a high surface area zirconium oxide for fuel cell application. Int J Mech Mater Eng. 2019;14(1):1–11.
  • Alshammari A, Kalevaru VN, Martin A. Metal nanoparticles as emerging green catalysts. In: Green nanotechnology-overview and further prospects. IntechOpen; 2016.
  • Guo T, Yao MS, Lin YH, et al. A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm. 2015;17(19):3551–3585.
  • Rajalakshmi N, Lakshmi N, Dhathathreyan KS. Nano titanium oxide catalyst support for proton exchange membrane fuel cells. Int J Hydrogen Energy. 2008;33(24):7521–7526.
  • Xu C, Cao L, Su G, et al. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J Hazard Mater. 2010;176(1-3):807–813.
  • Wen C, Zhu Y, Ye Y, et al. Water–gas shift reaction on metal nanoclusters encapsulated in mesoporous ceria studied with ambient-pressure X-ray photoelectron spectroscopy. ACS Nano. 2012;6(10):9305–9313.
  • Wang J, Lu AH, Li M, et al. Thin porous alumina sheets as supports for stabilizing gold nanoparticles. ACS Nano. 2013;7(6):4902–4910.
  • Campelo JM, Conesa TD, Gracia MJ, et al. Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chem. 2008;10(8):853–858.
  • Wang ZJ, Xie Y, Liu CJ. Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15. J Phys Chem C. 2008;112(50):19818–19824.
  • Jiang Y, Gao Q. Heterogeneous hydrogenation catalyses over recyclable Pd (0) nanoparticle catalysts stabilized by PAMAM-SBA-15 organic− inorganic hybrid composites. J Am Chem Soc. 2006;128(3):716–717.
  • Futamura S, Muramoto A, Tachikawa Y, et al. SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization. Int J Hydrogen Energy. 2019;44(16):8502–8518.
  • Hnit M, Myat ZM. Synthesis and characterization of titanium oxide (TiO2) Nanoparticles by Co-precipitation Method.
  • Maletić M, Vukčević M, Kalijadis A, et al. Hydrothermal synthesis of TiO2/carbon composites and their application for removal of organic pollutants. Arabian J Chem. 2019;12(8):4388–4397.
  • Ahmadi S, Asim N, Alghoul MA, et al. The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. Int J Photoenergy. 2014;2014:244–262.
  • Gonçalves MC. Sol-gel silica nanoparticles in medicine: a natural choice. Design, synthesis and products. Molecules. 2018;23(8):2021.
  • Yanwei H, Cheng G, Haoran LJCJ. Synthesis of SiO2 nanoparticles by chemical precipitation. CIESC J. 2016;67(s1):379.
  • Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials (Basel). 2014;7(4):2833–2881.
  • Mohan S, Vellakkat M, Aravind A, et al. Hydrothermal synthesis and characterization of zinc oxide nanoparticles of various shapes under different reaction conditions. Nano Exp. 2020;1(3):030028.
  • Wirunmongkol T, Narongchai O, Pavasupree S. Simple hydrothermal preparation of zinc oxide powders using Thai autoclave unit. Energy Proc. 2013;34:801–807.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37–38.
  • Tauster SJ, Fung SC, Garten RL. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc. 1978;100(1):170–175.
  • Baez VB, Graves JE, Pletcher D. The reduction of oxygen on titanium oxide electrodes. J Electroanal Chem. 1992;340(1-2):273–286.
  • Huang SY, Ganesan P, Jung HY, et al. Development of supported bifunctional oxygen electrocatalysts and corrosion-resistant gas diffusion layer for unitized regenerative fuel cell applications. J Power Sources. 2012;198:23–29.
  • Smith JR, Walsh FC, Clarke RL. Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex® materials. J Appl Electrochem. 1998;28:1021–1033.
  • Chen G, Bare SR, Mallouk TE. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J Electrochem Soc. 2002;149(8):A1092.
  • Ioroi T, Siroma Z, Fujiwara N, et al. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun. 2005;7(2):183–188.
  • Ioroi T, Senoh H, Yamazaki SI, et al. Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J Electrochem Soc. 2008;155(4):B321.
  • Ioroi T, Akita T, Yamazaki SI, et al. Corrosion-resistant PEMFC cathode catalysts based on a Magnéli-phase titanium oxide support synthesized by pulsed UV laser irradiation. J Electrochem Soc. 2011;158(10):C329.
  • Ioroi T, Akita T, Asahi M, et al. Platinum–titanium alloy catalysts on a Magnéli-phase titanium oxide support for improved durability in polymer electrolyte fuel cells. J Power Sources. 2013;223:183–189.
  • Zhang L, Kim J, Zhang J, et al. Ti4O7 supported Ru@ Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Appl Energy. 2013;103:507–513.
  • García BL, Fuentes R, Weidner JW. Low-temperature synthesis of a PtRu / Nb0. 1Ti0. 9O2 electrocatalyst for methanol oxidation. Electrochem Solid-State Lett. 2007;10(7):B108.
  • Park KW, Seol KS. Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun. 2007;9(9):2256–2260.
  • Kim JH, Ishihara A, Mitsushima S, et al. Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim Acta. 2007;52(7):2492–2497.
  • Bhowmick GD, Noori MT, Das I, et al. Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. Int J Hydrogen Energy. 2018;43(15):7501–7510.
  • Lalande G, Denis MC, Gouerec P, et al. Pt-based nanocomposites produced by high energy ball milling as electrocatalysts in polymer electrolyte fuel cells. J New Mater Electrochem Syst. 2000;3(3):185–192.
  • Shafia Hoor F, Ahmed MF, Mayanna SM. Methanol oxidative fuel cell: electrochemical synthesis and characterization of low-priced WO 3-Pt anode material. J Solid State Electrochem. 2004;8:572–576.
  • Lee CW, Lee CH, Jung DH, et al. (1998). Methanol oxidation and electrochemical characteristics on electrodeposited Pt/WO {sub 3} catalyst.
  • Park KW, Ahn KS, Choi JH, et al. Ptru–WO 3 nanostructured alloy electrode for use in thin-film fuel cells. Appl Phys Lett. 2003;82(7):1090–1092.
  • Park KW, Lee YW, Sung YE. Nanostructure catalysts prepared by multi-sputtering deposition process for enhanced methanol electrooxidation reaction. Appl Catal, B. 2013;132:237–244.
  • Hobbs BS, Tseung ACC. High performance, platinum activated tungsten oxide fuel cell electrodes. Nature. 1969;222(5193):556–558.
  • Chen KY, Shen PK, Tseung ACC. Anodic oxidation of formic acid on electrodeposited Pt/WO 3 electrode at room temperature. J Electrochem Soc. 1995;142(4):L54.
  • Shen PK, Chen KY, Tseung ACC. CO oxidation on Pt-Ru/WO 3 electrodes. J Electrochem Soc. 1995;142(6):L85.
  • Chen KY, Shen PK, Tseung ACC. Anodic oxidation of impure H 2 on teflon-bonded Pt-Ru/WO 3/C electrodes. J Electrochem Soc. 1995;142(10):L185.
  • Yasutake M, Anai H, Kawachino D, … Sasaki K. Metal-Oxide-Supported Ir-decorated electrocatalysts for polymer electrolyte membrane water electrolysis. ECS Trans. 2018;86(13):673.
  • Fabbri E, Pătru A, Rabis A, et al. Advanced cathode materials for polymer electrolyte fuel cells based on Pt/metal oxides: from model electrodes to catalyst systems. Chimia (Aarau). 2014;68(4):217–220.
  • Takabatake Y, Noda Z, Lyth SM, et al. Cycle durability of metal oxide supports for PEFC electrocatalysts. Int J Hydrogen Energy. 2014;39(10):5074–5082.
  • Matsui T, Fujiwara K, Okanishi T, et al. Electrochemical oxidation of CO over tin oxide supported platinum catalysts. J Power Sources. 2006;155(2):152–156.
  • Waki K, Matsubara K, Ke K, et al. Self-organized Pt / SnO2 electrocatalysts on multiwalled carbon nanotubes. Electrochem Solid-State Lett. 2005;8(10):A489.
  • Fan Y, Liu J, Lu H, et al. Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation. Electrochim Acta. 2012;76:475–479.
  • Zhang H, Hu C, He X, et al. Pt support of multidimensional active sites and radial channels formed by SnO2 flower-like crystals for methanol and ethanol oxidation. J Power Sources. 2011;196(10):4499–4505.
  • Sandoval-González A, Borja-Arco E, Escalante J, et al. Methanol oxidation reaction on PtSnO2 obtained by microwave-assisted chemical reduction. Int J Hydrogen Energy. 2012;37(2):1752–1759.
  • Yan Z, Xie J, Jing J, et al. Moo2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrogen Energy. 2012;37(21):15948–15955.
  • Wang Y, Fachini ER, Cruz G, et al. Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation. J Electrochem Soc. 2001;148(3):C222.
  • Liu Z, Hu JE, Wang Q, et al. Ptmo alloy and MoO x@ Pt core− shell nanoparticles as highly CO-tolerant electrocatalysts. J Am Chem Soc. 2009;131(20):6924–6925.
  • Higgins TM, McAteer D, Coelho JCM, et al. Effect of percolation on the capacitance of supercapacitor electrodes prepared from composites of manganese dioxide nanoplatelets and carbon nanotubes. ACS Nano. 2014;8(9):9567–9579.
  • Zhi M, Xiang C, Li J, et al. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2013;5(1):72–88.
  • Munakata H. Development of nanoparticle composite technique for low Pt-loading PEFCs. In: Nanoparticle technology handbook. Tokyo: Elsevier; 2018. p. 543–546.
  • Zhang J, Chen J, Zhou F, et al. Pt nanoparticles supported on nitrogen-doped carbon-TiO2 composite as a high-performance electrocatalyst for methanol oxidation. J Electrochem Energy Conv Storage. 2021;18(1):011005.
  • Pongpichayakul N, Themsirimongkon S, Maturost S, … Saipanya S. Cerium oxide-modified surfaces of several carbons as supports for a platinum-based anode electrode for methanol electro-oxidation. Int J Hydrogen Energy. 2021;46(3):2905–2916.
  • Shaari N, Kamarudin SK. Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview. Renewable Sustainable Energy Rev. 2017;69:862–870.
  • Yu M, Wu X, Zhang J, et al. Platinum nanoparticles-loaded holey reduced graphene oxide framework as freestanding counter electrodes of dye sensitized solar cells and methanol oxidation catalysts. Electrochim Acta. 2017;258:485–494.
  • Yang L, Ding Y, Chen L, et al. Hierarchical reduced graphene oxide supported dealloyed platinum–copper nanoparticles for highly efficient methanol electrooxidation. Int J Hydrogen Energy. 2017;42(10):6705–6712.
  • Daşdelen Z, Yıldız Y, Eriş S, et al. Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl Catal, B. 2017;219:511–516.
  • Zhang X, Zhang JW, Xiang PH, et al. Fabrication of graphene-fullerene hybrid by self-assembly and its application as support material for methanol electrocatalytic oxidation reaction. Appl Surf Sci. 2018;440:477–483.
  • Mu X, Xu Z, Ma Y, et al. Graphene-carbon nanofiber hybrid supported Pt nanoparticles with enhanced catalytic performance for methanol oxidation and oxygen reduction. Electrochim Acta. 2017;253:171–177.
  • Sha R, Badhulika S. Facile synthesis of three-dimensional platinum nanoflowers on reduced graphene oxide–Tin oxide composite: an ultra-high performance catalyst for methanol electro-oxidation. J Electroanal Chem. 2018;820:9–17.
  • Tang YJ, Gao MR, Liu CH, et al. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew Chem. 2015;127(44):13120–13124.
  • Li W, Wang X, Chen Z, et al. Pt− Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J Phys Chem B. 2006;110(31):15353–15358.
  • Zhan G, Fu Z, Sun D, … Wei Z. Platinum nanoparticles decorated robust binary transition metal nitride–carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction. J Power Sources. 2016;326:84–92.
  • Li X, Luo L, Peng F, et al. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst. Appl Surf Sci. 2018;434:534–539.
  • Liu G, Pan Z, Zhang B, et al. A novel TiN coated CNTs nanocomposite CNTs@ TiN supported Pt electrocatalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Int J Hydrogen Energy. 2017;42(17):12467–12476.
  • Huang M, Zhang J, Wu C, et al. Networks of connected Pt nanoparticles supported on carbon nanotubes as superior catalysts for methanol electrooxidation. J Power Sources. 2017;342:273–278.
  • Yang Z, Luo F. Pt nanoparticles deposited on dihydroxy-polybenzimidazole wrapped carbon nanotubes shows a remarkable durability in methanol electro-oxidation. Int J Hydrogen Energy. 2017;42(1):507–514.
  • Chen JM, Sarma LS, Chen CH, et al. Multi-scale dispersion in fuel cell anode catalysts: role of TiO2 towards achieving nanostructured materials. J Power Sources. 2006;159(1):29–33.
  • Muhamad EN, Takeguchi T, Wang G, et al. Electrochemical characteristics of Pd anode catalyst modified with TiO2 nanoparticles in polymer electrolyte fuel cell. J Electrochem Soc. 2008;156(1):B32.
  • Selvarani G, Maheswari S, Sridhar P, et al. Carbon-supported Pt–TiO2 as a methanol-tolerant oxygen-reduction catalyst for DMFCs. J Electrochem Soc. 2009;156(11):B1354.
  • Song H, Qiu X, Li F, et al. Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochem Commun. 2007;9(6):1416–1421.
  • Zhou X, Liu B, Chen Y, et al. Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications. Mater Adv. 2020;1(7):2163–2181.
  • Khater DZ, Amin RS, Zhran MO, et al. The enhancement of microbial fuel cell performance by anodic bacterial community adaptation and cathodic mixed nickel–copper oxides on a graphene electrocatalyst. J Genet Eng Biotechnol. 2022;20(1):12.
  • Cai T, Huang M, Huang Y, et al. Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode. Int J Hydrogen Energy. 2019;44(5):3088–3098.
  • Li Y, Ding J, Liu X, et al. Physically mixed Ni2Co/graphene catalyst for enhanced glucose oxidation in a glucose fuel cell. Biomass Conv Biorefinery. 2022;12: 1–13.
  • Nishanth KG, Sridhar P, Pitchumani S, et al. Enhanced methanol electro-oxidation on Pt-Ru decorated self-assembled TiO2-carbon hybrid nanostructure. ECS Trans. 2011;41(1):1139.
  • Pinheiro VS, Souza FM, Gentil TC, et al. Electrocatalysts based on low amounts of palladium combined with tin nanoparticles and cerium dioxide nanorods for application as ADEFC anodes. Int J Hydrogen Energy. 2021;46(79):39438–39456.
  • Ma J, Li J, Yang S, et al. Ultrathin veil-like SnO2 supported Co3O4 nanoparticles for direct borohydride fuel cell anode. J Power Sources. 2020;453:227866.
  • Esfahani RAM, Gavidia LMR, García G, et al. Highly active platinum supported on Mo-doped titanium nanotubes suboxide (Pt/TNTS-Mo) electrocatalyst for oxygen reduction reaction in PEMFC. Renew Energy. 2018;120:209–219.
  • Wang SF, Hsu YF, Chang JH, et al. Characteristics of Cu and Mo-doped Ca3Co4O9− δ cathode materials for use in solid oxide fuel cells. Ceram Int. 2016;42(9):11239–11247.
  • Kwon BW, Hu S, Marin-Flores O, et al. Retracted: high-performance molybdenum dioxide-based anode for dodecane-fueled solid-oxide fuel cells (SOFCs). Energy Technol. 2014;2(5):425–430.
  • Roy S, Ntim SA, Mitra S, et al. Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites. J Membr Sci. 2011;375(1-2):81–87.
  • Safarpour M, Khataee A, Vatanpour V. Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. Ind Eng Chem Res. 2014;53(34):13370–13382.
  • Ng LY, Mohammad AW, Leo CP, et al. Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination. 2013;308:15–33.
  • Peng F, Lu L, Sun H, et al. Hybrid organic− inorganic membrane: solving the tradeoff between permeability and selectivity. Chem Mater. 2005;17(26):6790–6796.
  • Yusoff YN, Loh KS, Wong WY, et al. Sulfonated graphene oxide as an inorganic filler in promoting the properties of a polybenzimidazole membrane as a high temperature proton exchange membrane. Int J Hydrogen Energy. 2020;45(51):27510–27526.
  • Liu T, Zhou H, Graham N, et al. 2D kaolin ultrafiltration membrane with ultrahigh flux for water purification. Water Res. 2019;156:425–433.
  • Cummins C, Lundy R, Walsh JJ, et al. Enabling future nanomanufacturing through block copolymer self-assembly: a review. Nano Today. 2020;35:100936.
  • Riaz S, Park SJ. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J Ind Eng Chem. 2020;84:23–41.
  • Wen Y, Yuan J, Ma X, et al. Polymeric nanocomposite membranes for water treatment: a review. Environ Chem Lett. 2019;17:1539–1551.
  • Yu LY, Shen HM, Xu ZL. PVDF–tio2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J Appl Polym Sci. 2009;113(3):1763–1772.
  • Gilbert B, Ono RK, Ching KA, et al. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci. 2009;339(2):285–295.
  • Bashambu L, Singh R, Verma J. Metal/metal oxide nanocomposite membranes for water purification. Mater Today Proc. 2021;44:538–545.
  • Elakkiya S, Arthanareeswaran G, Ismail AF, et al. Polyaniline coated sulfonated TiO2 nanoparticles for effective application in proton conductive polymer membrane fuel cell. Eur Polym J. 2019;112:696–703.
  • Wu J, Yi S, Wang Y, et al. Polymer-based TiO2 nanocomposite membrane: synthesis and organic pollutant removal. Int J Smart Nano Mater. 2021;12(2):129–145.
  • Lee DC, Yang HN, Park SH, et al. Self-humidifying Pt–graphene/SiO2 composite membrane for polymer electrolyte membrane fuel cell. J Membr Sci. 2015;474:254–262.
  • Park KT, Jung UH, Choi DW, et al. Zro2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources. 2008;177(2):247–253.
  • Du J, Wu L, Tao CY, et al. Preparation and characterization of Fe3O4/PVDF magnetic composite membrane. Acta Phys Chim Sin. 2004;20(6):598–601.
  • Jian K, Pintauro PN, Ponangi R. Separation of dilute organic/water mixtures with asymmetric poly (vinylidene fluoride) membranes. J Membr Sci. 1996;117(1-2):117–133.
  • Kim HG, Kim R, Kim S, et al. Propylene carbonate-derived size modulation of water cluster in pore-filled Nafion/polypropylene composite membrane for the use in vanadium redox flow batteries. J Ind Eng Chem. 2018;60:401–406.
  • Losito I, Amorisco A, Palmisano F, et al. X-ray photoelectron spectroscopy characterization of composite TiO2–poly (vinylidenefluoride) films synthesised for applications in pesticide photocatalytic degradation. Appl Surf Sci. 2005;240(1-4):180–188.
  • Cao X, Ma J, Shi X, et al. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci. 2006;253(4):2003–2010.
  • Hasegawa T, Beleke AB, Mizuhata M. Membrane modification by liquid phase deposition using small amount of TiO2 for high-temperature operation of polymer electrolyte fuel cells. J Power Sources. 2013;233:148–156.
  • Mousavi SA. Effect of casting solvent on the characteristics of Nafion/TiO2 nanocomposite membranes for microbial fuel cell application. Int J Hydrogen Energy. 2016;41(1):476–482.
  • Jang S, Kang YS, Choi J, et al. Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation. J Ind Eng Chem. 2020;90:327–332.
  • Aparicio GM, Vargas RA, Bueno PR. Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. J Non-Cryst Solids. 2019;522:119520.
  • Yagizatli Y, Ulas B, Cali A, et al. Improved fuel cell properties of nano-TiO2 doped poly (Vinylidene fluoride) and phosphonated poly (Vinyl alcohol) composite blend membranes for PEM fuel cells. Int J Hydrogen Energy. 2020;45(60):35130–35138.
  • Tang D, Yuan R, Chai Y. Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clin Chem. 2007;53(7):1323–1329.
  • Zhang Y, Shan L, Tu Z, et al. Preparation and characterization of novel Ce-doped nonstoichiometric nanosilica/polysulfone composite membranes. Sep Purif Technol. 2008;63(1):207–212.
  • Appetecchi GB, Croce F, Romagnoli P, et al. High-performance gel-type lithium electrolyte membranes. Electrochem Commun. 1999;1(2):83–86.
  • Uragami T, Okazaki K, Matsugi H, et al. Structure and permeation characteristics of an aqueous ethanol solution of organic− inorganic hybrid membranes composed of poly (vinyl alcohol) and tetraethoxysilane. Macromolecules. 2002;35(24):9156–9163.
  • Thiam HS, Daud WRW, Kamarudin SK, et al. Nafion/Pd–SiO2 nanofiber composite membranes for direct methanol fuel cell applications. Int J Hydrogen Energy. 2013;38(22):9474–9483.
  • Wang H, Li X, Zhuang X, et al. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J Power Sources. 2017;340:201–209.
  • Amjadi M, Rowshanzamir S, Peighambardoust SJ, et al. Preparation, characterization and cell performance of durable nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. J Power Sources. 2012;210:350–357.
  • Cheng Y, Zhang J, Lu S, et al. High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200–250 C. Int J Hydrogen Energy. 2018;43(49):22487–22499.
  • Zaidi SMJ, Mikhailenko SD, Robertson GP, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J Membr Sci. 2000;173(1):17–34.
  • Vallejo E, Pourcelly G, Gavach C, et al. Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane. J Membr Sci. 1999;160(1):127–137.
  • Pan J, Zhang H, Chen W, et al. Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process. Int J Hydrogen Energy. 2010;35(7):2796–2801.
  • Sacca A, Gatto I, Carbone A, et al. Zro2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J Power Sources. 2006;163(1):47–51.
  • Mohammadi G, Jahanshahi M, Rahimpour A. Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy. 2013;38(22):9387–9394.
  • Rambabu K, Bharath G, Arangadi AF, et al. Zro2 incorporated polysulfone anion exchange membranes for fuel cell applications. Int J Hydrogen Energy. 2020;45(54):29668–29680.
  • Vinodh R, Purushothaman M, Sangeetha D. Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications. Int J Hydrogen Energy. 2011;36(12):7291–7302.
  • Shaari N, Kamarudin SK. Chitosan and alginate types of bio-membrane in fuel cell application: An overview. J Power Sources. 2015;289:71–80.
  • Zhang Y, Cui Z, Liu C, et al. Implantation of Nafion® ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells. J Power Sources. 2009;194(2):730–736.
  • Ahmed S, Arshad T, Zada A, et al. Preparation and characterization of a novel sulfonated titanium oxide incorporated chitosan nanocomposite membranes for fuel cell application. Membranes. 2021;11(6):450.
  • Humelnicu AC, Samoila P, Asandulesa M, et al. Chitosan-sulfated titania composite membranes with potential applications in fuel cell: influence of cross-linker nature. Polymers (Basel). 2020;12(5):1125.
  • Ruiz Gómez EE, Mina Hernández JH, Diosa Astaiza JE. Development of a Chitosan/PVA/TiO2 nanocomposite for application as a solid polymeric electrolyte in fuel cells. Polymers (Basel). 2020;12(8):1691.
  • Vijayakumar V, Khastgir D. Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells. Carbohydr Polym. 2018;179:152–163.
  • Kalaiselvimary J, Sundararajan M, Prabhu MR. Preparation and characterization of chitosan-based nanocomposite hybrid polymer electrolyte membranes for fuel cell application. Ionics. 2018;24:3555–3571.
  • Aburabie J, Lalia B, Hashaikeh R. Proton conductive, low methanol crossover cellulose-based membranes. Membranes. 2021;11(7):539.
  • Khalifa RE, Omer AM, Abd Elmageed MH, et al. Titanium dioxide/phosphorous-functionalized cellulose acetate nanocomposite membranes for DMFC applications: enhancing properties and performance. ACS Omega. 2021;6(27):17194–17202.
  • Ping-Ping Z, Yu-Long Z, Hua-Feng F, et al. Fabrication and properties of graphene oxide-reinforced Carrageenan Film. Chem J Chin Univ-Chin. 2013;34(3):692–697.
  • Zhang W, Yu Z, Qian Q, et al. Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure. J Membr Sci. 2010;348(1-2):213–223.
  • Shaari N, Kamarudin SK. Sodium alginate/alumina composite biomembrane preparation and performance in DMFC application. Polym Test. 2020;81:106183.
  • Shaari N, Kamarudin SK. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: an overview. Int J Energy Res. 2019;43(7):2756–2794.
  • Liu Q, Lan F, Chen J, et al. A review of proton exchange membrane fuel cell water management: membrane electrode assembly. J Power Sources. 2022;517:230723.
  • Ali N, Said A, Ali F, et al. Development and characterization of functionalized titanium dioxide-reinforced sulfonated copolyimide (SPI/TiO 2) nanocomposite membranes with improved mechanical, thermal, and electrochemical properties. J Inorg Organomet Polym Mater. 2020;30:4585–4596.
  • Park HB, Lee CH, Sohn JY, et al. Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J Membr Sci. 2006;285(1-2):432–443.
  • Gumbi NN, Li J, Mamba BB, et al. Relating the performance of sulfonated thin-film composite nanofiltration membranes to structural properties of macrovoid-free polyethersulfone/sulfonated polysulfone/O-MWCNT supports. Desalination. 2020;474:114176.
  • Muliawati EC, Ismail AF, Jaafar J, et al. Sulfonated PEI membrane with GPTMS-TiO2 as a filler for potential direct methanol fuel cell (DMFC) applications. Malays J Fundam Appl Sci. 2019;15(4):555–560.
  • Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy. 2010;35(17):9349–9384.
  • Zeng S, Zeng L, Wang R, et al. Effect of elevated temperature annealing on Nafion/SiO2 composite membranes for the all-vanadium redox flow battery. Polymers (Basel). 2018;10(5):473.
  • Fazio E, Spadaro S, Corsaro C, et al. Metal-oxide based nanomaterials: synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors. 2021;21(7):2494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.