202
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Compressive behaviour of open-cell Al–Si alloy foam produced by infiltration casting

, & ORCID Icon
Pages 2433-2445 | Received 10 Dec 2022, Accepted 10 Apr 2023, Published online: 19 Apr 2023

References

  • Wan T, Liu Y, Zhou C, et al. Fabrication, properties, and applications of open-cell aluminum foams: a review. J Mater Sci Technol. 2021;62:11–24.
  • Jinnapat A, Kennedy AR. The manufacture of spherical salt beads and their use as dissolvable templates for the production of cellular solids via a powder metallurgy route. J Alloys Compd. 2010;499(1):43–47.
  • Papantoniou IG, Markopoulos AP, Pantelis DI, et al. Application of aluminium flakes in fabrication of open-cell aluminium foams by space holder method. Materials (Basel). 2018;11(8):1420.
  • Marx J, Rabiei A. Overview of composite metal foams and their properties and performance. Adv Eng Mater. 2017;19:1600776.
  • Zhou X, Jia Z, Zhang X, et al. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J Mater Sci Technol. 2021;87:120–132.
  • Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge, Cambridge University Press; 1999.
  • Gama BA, Bogetti TA, Fink BK, et al. Aluminum foam integral armor: a new dimension in armor design. Compos Struct. 2001;52(3–4):381–395.
  • Tan PJ, Harrigan JJ, Reid SR. Inertia effects in uniaxial dynamic compression of a closed cell aluminum alloy foam. Mater Sci Technol. 2002;18(5):480–488.
  • Lopatnikov SL, Gama BA, Haque J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment. Compos Struct. 2003;61(1–2):61–71.
  • Su M, Wang H, Hao H, et al. Compressive properties of expanded glass and alumina hollow spheres hybrid reinforced aluminum matrix syntactic foams. J Alloys Compd. 2019;821:153233.
  • Wang D, Zhang X, Zu G, et al. Compressive properties of biomedical open-cell Zn foam. Mater Res Express. 2019;6:115406.
  • Lu TJ. Ultralight porous metals: from fundamentals to applications. Acta Mech Sin. 2002;18(5):457–479.
  • Surace R, De Filippis LAC, Ludovico AD, et al. Influence of processing parameters on aluminium foam produced by space holder technique. Mater Des. 2009;30(6):1878–1885.
  • Zhao Y, Han F, Fung T. Optimisation of compaction and liquid-state sintering in sintering and dissolution process for manufacturing Al foams. Mater Sci Eng A. 2004;364(1–2):117–125.
  • Banhart J, Baumeister J, Weber M. Damping properties of aluminum foams. Mater Sci Eng A. 1996;205(1–2):221–228.
  • Yu C, Eifert HH, Banhart J, et al. Metal foaming by a powder metallurgy method: production, properties and applications. Mater Res Innov. 1998;2:181–188.
  • Maine EMA, Ashby MF. Applying the investment methodology for materials (IMM) to aluminium foams. Mater Des. 2002;23(3):307–319.
  • Liu J, Liu S, Shi S, et al. Adjusting compressive properties of open-cell Mg-Gd-Zn foams by variation of Gd content. Mater Sci Eng A. 2021;820:141562.
  • Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci. 2001;46(6):559–632.
  • Wan T, Liu Y, Zhou C, et al. Fabrication of high-porosity open-cell aluminum foam via high-temperature deformation of CaCl2 space-holders. Mater Lett. 2021;284:129018.
  • Hussain Z, Suffin NSA. Microstructure and mechanical behaviour of aluminium foam produced by sintering dissolution process using NaCl space holder. J Eng Sci. 2011;7:37–49.
  • Zhao Y, Sun D. A novel sintering-dissolution process for manufacturing Al foams. Scr Mater. 2001;44(1):105–110.
  • Bafti H, Habibolahzadeh A. Compressive properties of aluminum foam produced by powder-carbamide spacer route. Mater Des. 2013;52:404–411.
  • Sathaiah S, Dubey R, Pandey A, et al. Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam. Mater Chem Phys. 2021;273:125115.
  • Bafti H, Habibolahzadeh A. Production of aluminum foam by spherical carbamide space holder technique-processing parameters. Mater Des. 2010;31(9):4122–4129.
  • Jiang B, Zhao N, Shi C, et al. A novel method for making open cell aluminum foams by powder sintering process. Mater Lett. 2005;59(26):3333–3336.
  • Michailidisa N, Stergioudia F, Tsouknidasb A, et al. Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material. Mater Sci Eng A. 2011;528(3):1662–1667.
  • Michailidisa N, Stergioudia F. Establishment of process parameters for producing Al-foam by dissolution and powder sintering method. Mater Des. 2011;32(3):1559–1564.
  • Chang K, Gao J, Wang Z, et al. Manufacturing 3-D open-cell aluminum foam via infiltration casting in a super-gravity field. J Mater Process Technol. 2018;252:705–710.
  • Szlancsik A, Katona B, Bobor K, et al. Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres. Mater Des. 2015;83:230–237.
  • Kemény A, Leveles B, Bubonyi T, et al. Effect of particle size and volume ratio of ceramic hollow spheres on the mechanical properties of bimodal composite metal foams. Compos Part A – Appl Sci Manuf. 2021;140:106152.
  • Szlancsik A, Orbulov IN. Compressive properties of metal matrix syntactic foams in uni- and triaxial compression. Mater Sci Eng A. 2021;827:142081.
  • Katona B, Szlancsik A, Tábicd T, et al. Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Mater Sci Eng A. 2019;739:140–148.
  • Májlinger K, Orbulov IN. Characteristic compressive properties of hybrid metal matrix syntactic foams. Mater Sci Eng A. 2014;606:248–256.
  • Kemény A, Movahedi N, Fiedler T, et al. The influence of infiltration casting technique on properties of metal syntactic foams and their foam-filled tube structures. Mater Sci Eng A. 2022;852:143706.
  • Orbulov IN, Szlancsik A, Kemény A, et al. Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Compos Part A – Appl Sci Manuf. 2020;135:105823.
  • Marx JC, Robbins SJ, Grady ZA, et al. Polymer infused composite metal foam as a potential aircraft leading edge material. Appl Surf Sci. 2020;505:144114.
  • Yang K, Yang X, Liu E, et al. High strain rate dynamic compressive properties and deformation behavior of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. Mater Sci Eng A. 2018;729:487–495.
  • Guo C, Zou T, Shi C, et al. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers. Mater Sci Eng A. 2015;645:1–7.
  • Cheneler D, Kennedy AR. A comparison of the manufacture and mechanical performance of porous aluminum and aluminum syntactic foams made by vacuum-assisted casting. Mater Sci Eng A. 2020;789:139528.
  • Cheng Y, Li Y, Chen X, et al. Compressive properties and energy absorption of aluminum foams with a wide range of relative densities. J Mater Eng Perform. 2018;27:4016–4024.
  • Ashby MF, Evans AG, Fleck NA, et al. Metal foams: a design guide. Burlington: Butterworth-Heinemann; 2000.
  • Demetriou MD, Hanan JC, Veazey C, et al. Yielding of metallic glass foam by percolation of an elastic buckling instability. Adv Mater. 2007;19:1957–1962.
  • Sánchez-Martínez A, Cruz A, González-Nava M, et al. Main process parameters for manufacturing open-cell Zn-22Al-2Cu foams by the centrifugal infiltration route and mechanical properties. Mater Des. 2016;108:494–500.
  • Fan Z, Zhang B, Gao Y, et al. Deformation mechanisms of spherical cell porous aluminum under quasi-static compression. Scr Mater. 2018;142:32–35.
  • Taherishargh M, Sulong MA, Belova IV, et al. On the particle size effect in expanded perlite aluminum syntactic foam. Mater Des. 2015;66:294–303.
  • Mu Y, Yao G, Liang L, et al. Deformation mechanisms of closed-cell aluminum foam in compression. Scr Mater. 2010;63(6):629–632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.