265
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anisotropy of nanoindentation in copper single crystals under different orientations

, , , , &
Pages 2446-2455 | Received 20 Dec 2022, Accepted 16 Apr 2023, Published online: 04 May 2023

References

  • Rester M, Motz C, Pippan R. Indentation across size scales – a survey of indentation-induced plastic zones in copper {111} single crystals. Scr Mater. 2008;59(7):742–745.
  • Voyiadjis G, Yaghoobi M. Review of nanoindentation size effect: experiments and atomistic simulation. Crystals (Basel). 2017;7(12):321.
  • Cuyi X. Applications of nanoindentation techniques in material science. Physics (College Park, MD). 2001;(7): 432–435.
  • Ying Z, Yingxue Y, Liang Z. Nano-indentation technology and its experimental research. Tool Eng 2004;38(8):13–16.
  • Stelmashenko NA, Walls MG, Brown LM, et al. Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater. 1993;41(10):2855–2865.
  • Stelmashenko NA, Walls MG, Brown LM, et al. STM study of microindentations on oriented metallic single crystals. Mechanical properties and deformation behavior of materials having ultra-fine microstructures. 1993.
  • Guzman MSD, Neubauer G, Flinn P, et al. The role of indentation depth on the measured hardness of materials. Mrs online proceeding library archive. 1993:308.
  • Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46(3):411–425.
  • Rester M, Motz C, Pippan R. Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 2007;55(19):6427–6435.
  • Demir E, Raabe D, Zaafarani N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 2009;57(2):559–569.
  • Hoover WG, De Groot AJ, Hoover CG, et al. Large-scale elastic-plastic indentation simulations via nonequilibrium molecular dynamics. Phys Rev A. 1990;42(10):5844–5853.
  • Belak J, Boercker DB, Stowers IF. Simulation of nanometer-scale deformation of metallic and ceramic surfaces. MRS Bull. 1993;18(05):55–60.
  • Belak J. Nanotribology: modeling atoms when surfaces collide. Energy Technol Rev. 1994: 13–24.
  • Belak J, Glosli JN, Boercker DB, et al. Molecular dynamics simulation of mechanical deformation of ultra-thin metal and ceramic films. Mrs Proc. 1995;389:181–190.
  • Shan DB, Guo B, Wang CJ, et al. Development in micro forming process. Mater Sci Technol. 2004;12(5):449–453.
  • Liu Y, Varghese S, Ma J, et al. Orientation effects in nanoindentation of single crystal copper. Int J Plast. 2008;24:1990–2015.
  • Wang Z, Zhang J, ul Hassa H, et al. Coupled effect of crystallographic orientation and indenter geometry on nanoindentation of single crystalline copper. Int J Mech Sci. 2018;148:531–539.
  • Tsuru T, Shibutani Y. Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys Rev B. 2007;75(3):035415.
  • Wang Y, Raabe D, Klüber C, et al. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 2004;52(8):2229–2238.
  • Liu Y, Varghese S, Ma J, et al. Orientation effects in nanoindentation of single crystal copper. Int J Plast. 2008;24:1990–2015.
  • Shinde AB, Owhal A, Sharma A, et al. Comparative analysis of mechanical properties for mono and poly-crystalline copper under nanoindentation–insights from molecular dynamics simulations. Mater Chem Phys. 2022;277:125559.
  • Hill R, Rice JR. Constitutive analysis of elastic–plastic crystals at arbitrary strain. J Mech Phys Solids. 1972;20:401–413.
  • Asaro RJ, Needleman A. Texture development and strain hardening in rate dependent polycrystals. Acta Metall. 1985;33:923–953.
  • Kalidindi SR, Bronkhorst CA, Anand L. Crystallographic texture evolution during bulk deformation processing of FCC metals. J Mech Phys Solids. 1992;40:537–569.
  • Bolshakov A, Pharr GM. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res. 1998;13(4):1049–1058.
  • Lichinchi M, Lenardi C, Haupt J, et al. Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films. 1998;312(1-2):240–248.
  • Liu M, Lu C, Tieu AK. Crystal plasticity finite element method modelling of indentation size effect. Int J Solids Struct. 2015;54:42–49.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–1583.
  • Asaro RJ, Rice JR. Strain localization in ductile single crystals. J Mech Phys Solids. 1977;25(5):309–338.
  • Asaro RJ. Crystal plasticity. J Appl Mech. 1983;50(4b):921–934.
  • Lee EH. Elastic-plastic deformation at finite strains. J Appl Mech. 1969;36:1–6.
  • Boeff M, Hassan Hu, Hartmaier A. Micromechanical modeling of fatigue crack initiation in polycrystals. J Mater Res. 2017;32(23):4375–4386.
  • Hutchinson JW. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc London. 1976;348(1652):101–127.
  • Bassani JL, Wu TY. Latent hardening in single crystals II. Analytical characterization and predictions. Proc R Soc A Math Phys Eng Sci. 1991;435(1893):21–41.
  • Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 2010;58(4):1152–1211.
  • Chang HJ. Analysis of nano indentation size effect based on dislocation dynamics and crystal plasticity. 2009.
  • Joslin DL, Oliver WC. A new method for analyzing data from continuous depth-sensing microindentation tests. J Mater Res. 1990;5(1):123–126.
  • Bao YW, Wang W, Zhou YC. Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater. 2004;52:5397–5404.
  • Qu S, Huang Y, Nix WD. Indenter tip radius effect on the Nix–Gao relation in micro-and nanoindentation hardness experiments. J Mater Res. 2004;19(11):3423–3434.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.