175
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of processing parameters on the LPBF-deposited AlSi10Mg/SiCp composite: microstructure and mechanical properties

, , , , , , , & show all
Pages 2501-2514 | Received 14 Dec 2022, Accepted 08 Mar 2023, Published online: 09 May 2023

Reference

  • Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater. 2003;51:5775–5799. doi:10.1016/j.actamat.2003.08.023.
  • Thijs L, Kempen K, Kruth J-P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809–1819. doi:10.1016/j.actamat.2012.11.052.
  • Yu WH, Sing SL, Chua CK, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Prog. Mater. Sci. 2019;104:330–379. doi:10.1016/j.pmatsci.2019.04.006.
  • Xue G, Ke LD, Liao HL, et al. Effect of SiC particle size on densification behavior and mechanical properties of AlSi10Mg/SiCp composites fabricated by laser powder bed fusion. J. Alloys Compd. 2020;845:156260. doi:10.1016/j.jallcom.2020.156260.
  • Atzeni E, Salmi A. Study on unsupported overhangs of AlSi10Mg parts processed by direct metal laser sintering (DMLS). J. Manuf. Process. 2015;20:500–506. doi:10.1016/j.jmapro.2015.04.004.
  • Simons M. Additive manufacturing – a revolution in progress? insights from a multiple case study. Int J Adv Manuf Tech. 2018;96(1-4):735–749. doi:10.1007/s00170-018-1601-1.
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549:365–369. doi:10.1038/nature23894.
  • Wang ZY, Zhuo LC, Yin EH, et al. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys. Mater Sci Eng: A. 2021;808:140864. doi:10.1016/j.msea.2021.140864.
  • Chang F, Gu DD, Dai DH, et al. Selective laser melting of in-situ Al4SiC4 + SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size. Surf Coat Technol. 2015;272:15–24. doi:10.1016/j.surfcoat.2015.04.029.
  • Xi X, Chen B, Tan C, et al. Microstructure and mechanical properties of SiC reinforced AlSi10Mg composites fabricated by laser metal deposition. J Manuf Process. 2020;58:763–774. doi:10.1016/j.jmapro.2020.08.073.
  • Xue G, Ke L, Zhu H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: densification, microstructure and mechanical properties. Mater Sci Eng: A. 2019;764:138155. doi:10.1016/j.msea.2019.138155.
  • Gu DD. Laser additive manufacturing of high-perfor-mance materials. Berlin, Heidelberg: Springer-Verlag; 2015. doi:10.1007/978-3-662-46089-4
  • Zhao X, Gu DD, Ma CL, et al. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites. Vacuum. 2019;160:189–196. doi:10.1016/j.vacuum.2018.11.022.
  • Jandaghi MR, Pouraliakbar H, Fallah V, et al. Additive manufacturing of nano-oxide decorated AlSi10Mg composites: a comparative study on Gd2O3 and Er2O3 additions. Mater Charact. 2022;192:112206. doi:10.1016/j.matchar.2022.112206.
  • Jandaghi MR, Aversa A, Manfredi D, et al. In situ alloying of AlSi10Mg-5 wt% Ni through laser powder bed fusion and subsequent heat treatment. J Alloys Compd. 2022;904:164081. doi:10.1016/j.jallcom.2022.164081.
  • Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des (1980–2015). 2015;65:417–424. doi:10.1016/j.matdes.2014.09.044.
  • Wang L, Wang S, Hong X. Pulsed SLM-manufactured AlSi10Mg alloy: mechanical properties and microstructural effects of designed laser energy densities. J Manuf Process. 2018;35:492–499. doi:10.1016/j.jmapro.2018.09.007.
  • Ren YM, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4 V alloy by high-power laser solid forming. Acta Mater. 2017;132:82–95. doi:10.1016/j.actamat.2017.04.026.
  • Zhang D, Yi D, Wu X, et al. Sic reinforced AlSi10Mg composites fabricated by selective laser melting. J Alloys Compd. 2022;894:162365. doi:10.1016/j.jallcom.2021.162365.
  • Astfalck LC, Kelly GK, Li X, et al. On the breakdown of SiC during the selective laser melting of aluminum matrix composites. Adv Eng Mater. 2017;19:1600835. doi:10.1002/adem.201600835.
  • Bonneric M, Brugger C, Saintier N. Effect of hot isostatic pressing on the critical defect size distribution in AlSi7Mg0.6 alloy obtained by selective laser melting. Int J Fatigue. 2020;140:105797. doi:10.1016/j.ijfatigue.2020.105797.
  • Ben DD, Ma YR, Yang HJ, et al. Heterogeneous microstructure and voids dependence of tensile deformation in a selective laser melted AlSi10Mg alloy. Mater Sci Eng: A. 2020;798:140109. doi:10.1016/j.msea.2020.140109.
  • Yan Q, Song B, Shi Y. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol. 2020;41:199–208. doi:10.1016/j.jmst.2019.08.049.
  • Paul MJ, Liu Q, Best JP, et al. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater. 2021;211:116869. doi:10.1016/j.actamat.2021.116869.
  • Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng: R. 2000;29:49–113. doi:10.1016/S0927-796X(00)00024-3.
  • Zhu JW, Jiang WM, Li GY, et al. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J Manuf Process Technol. 2020;283:116699. doi:10.1016/j.jmatprotec.2020.116699.
  • Slipenyuk A, Kuprin V, Milman Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater. 2006;54:157–166. doi:10.1016/j.actamat.2005.08.036.
  • Wu J, Wang XQ, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater. 2016;117:311–320. doi:10.1016/j.actamat.2016.07.012.
  • Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/LPBF) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477. doi:10.1016/j.pmatsci.2015.03.002.
  • Chen K, Xu L, Gan J, et al. Effects of laser power on microstructure and mechanical properties of selective laser melted AlSi10Mg. Laser Optoelectron P. 2021;58; doi:10.3788/LOP202158.1314001.
  • Lee JC, Byun JY, Park SB, et al. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Mater. 1998;46:1771–1780. doi:10.1016/S1359-6454(97)00265-6.
  • Gu DD, Shi XY, Poprawe R, et al. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372:eabg1487. doi:10.1126/science.abg1487.
  • Gu DD, Wang HQ, Dai DH, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scripta Mater. 2015;96:25–28. doi:10.1016/j.scriptamat.2014.10.011.
  • Gu DD, Rao XW, Dai DH, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: processing optimization, microstructure evolution and mechanical properties. Addit Manuf. 2019;29:100801. doi:10.1016/j.addma.2019.100801.
  • Famodimu OH, Stanford M, Oduoza CF, et al. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite. Front Mech Eng. 2018;13:520–527. doi:10.1007/s11465-018-0521-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.