129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gas detonation-prepared nano-carbon-based capsule matrix materials: characterisation and microwave-absorption properties

, , , &
Pages 2515-2524 | Received 22 Dec 2022, Accepted 30 Apr 2023, Published online: 11 May 2023

References

  • Yin L, et al. 3D printing and characterization of metamaterial composite structures for absorbing and shielding electromagnetic waves. J Phys Conf Ser. 2021;1721(1):12026–12028.
  • Zhang X, et al. Break Snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanoparticles. Appl Phys Lett. 2015;106(3):8392.
  • Taekhee K, et al. A study on shielding effects for electromagnetic waves of the sheet heating elements. J Nanosci Nanotechnol. 2019;19(3):1234–1241.
  • Huang D, et al. Preparation and adsorption properties of aminated magnetic carbon nanotubes. J For Eng. 2022;7(04):100–106.
  • Wei L, et al. Sandwich-like chitosan porous carbon spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J Bioresour Bioprod. 2022;7(1):63–72.
  • Ru L, et al. Preparation of magnetic carbon with microwave absorption property using bamboo powder. J For Eng. 2021;6(1):112–120.
  • Jjagwe J, et al. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J Bioresour Bioprod. 2021;6(4):292–322.
  • Zhang Y, et al. Facile preparation of CNTs microspheres as improved carbon absorbers for high-efficiency electromagnetic wave absorption. Ceram Int. 2020;47(6):10013–10018.
  • Zheng J, et al. From waste to wealth: crumb rubber@carbon nanotube/Fe3O4 composites towards highly effective electromagnetic microwave absorption with wide bandwidth. Diamond Relat Mater. 2022;126-:126.
  • Jing Y, et al. Biomass carbon materials with porous array structures derived from soybean dregs for effective electromagnetic wave absorption. Diamond Relat Mater. 2022;126:109054.
  • Zheng J, et al. Flower-like bimetal-organic framework derived composites with tunable structures for high-efficiency electromagnetic wave absorption. J Colloid Interface Sci. 2022;628:261–270.
  • Rokhy H, et al. Fluid structure interaction with a finite rate chemistry model for simulation of gaseous detonation metal-forming. Int J Hydrogen Energy. 2019;44(41):23289–23302.
  • Wu L, et al. Characterization and photocatalytic properties of SnO2–TiO2 nanocomposites prepared through gaseous detonation method. Ceram Int. 2017;43(1):1517–1521.
  • Cao J, et al. High-temperature solid-phase synthesis of lithium iron phosphate using polyethylene glycol grafted carbon nanotubes as the carbon source for rate-type lithium-ion batteries. J Electroanal Chem. 2022;907:116049.
  • Barrow NJ, et al. Plant nutrition: from genetic engineering to field practice: proceedings of the Twelfth International Plant Nutrition Colloquium, 21–26 September 1993, Perth, Western Australia. Dev Plant Soil Sci. 1993;155–156(1):255–261.
  • Salmi T, et al. [Advances in Chemical Engineering] Chemical Engineering for Renewables Conversion Volume 42 || Chemical Reaction Engineering of Biomass Conversion. 2013;195–260.
  • Connor JA, et al. Microcalorimetric studies. Thermal decomposition and iodination of metal carbonyls. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases. 1972;68(1):1755–1763.
  • Klauser F, et al. Raman studies of nano- and ultra-nanocrystalline diamond films grown by hot-filament CVD. Chem Vap Deposition. 2010;16(6):127–135.
  • Zhao T, et al. Detonation modification of multi-walled carbon nanotubes. Chin J High Pressure Phys. 2017;31(4):403–408.
  • Sonkar S, et al. Carbon nanocubes and nanobricks from pyrolysis of rice. J Nanosci Nanotechnol. 2010;10(6):267–275.
  • Deck CP, et al. Prediction of carbon nanotube growth success by the analysis of carbon–catalyst binary phase diagrams. Carbon. 2006;44(2):267–275.
  • Gresho PM, et al. Incompressible flow and the finite element method. Volume 1: advection-diffusion and isothermal laminar flow. Proc Inst Mech Eng Part G J Aerosp Eng. 1998;215(3):185–185.
  • Matus EV, et al. Beneficial role of the nitrogen-doped carbon nanotubes in the synthesis of the active palladium supported catalyst. Diamond Relat Mater. 2019;98:107484.
  • Fu Q, et al. Mesoporous materials. Chem Nanostruct Mater. 2003;15(15):1262–1266.
  • Ariga K, et al. Nanoarchitectonics for mesoporous materials. Bull Chem Soc Jpn. 2012;85(1):1–32.
  • Rouquerol F, et al. Assessment of microporosity – ScienceDirect. Adsorp Powd Porous Solids. 1999;75(9 Suppl):219–236.
  • Zhang S, et al. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: an overview of recent advances and prospects. J Alloys Compd: Interdiscip J Mater Sci Solid-State Chem Phys. 2022;893-:893.
  • Dalkilic A, et al. Characterization and design of elastomeric magnetodielectric materials for radar absorber structures: General Assembly & Scientific Symposium of the International Union of Radio Science, 2017.
  • Phan CH, et al. Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. J Magn Magn Mater. 2016;401(MAR):472–478.
  • Segre ES, et al. Electromagnetic wave polarization change and characteristic waves in an inhomogeneous plasma with sheared magnetic field. Plasma Phys Controll Fusion. 1990;32(13):1249.
  • Wu R, et al. Cellulose nanocrystals extracted from grape pomace with deep eutectic solvents and application for self-healing nanocomposite hydrogels. Macromol Mater Eng. 2020;350(6):1900673.
  • Liu L, et al. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons. ACS Sustain Chem Eng. 2019;7(1):1228–1238.
  • Wang Y, et al. From nanoscale to macroscale: engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption. Appl Surf Sci. 2018;439:176–185.
  • Du H, et al. Systematic fabrication and electromagnetic performance of porous biomass carbon/ferrite nanocomposites. J Alloys Compd: Interdiscip J Mater Sci Solid-State Chemi Phys. 2022;896-:896.
  • Cui H, et al. Preparation and properties of natural rubber composite with CoFe2O4-immobilized biomass carbon. e-Polymers. 2022;22(1):214–222.
  • Lv H, et al. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J Mater Chem C. 2015;3(4):261–268.
  • Guan H, et al. Microwave absorption performance of Ni(OH)(2) decorating biomass carbon composites from Jackfruit peel. Appl Surf Sci: J Devoted Proper Interf Rel Synth Behav Mater. 2018;22(1):214–222.
  • Wang H, et al. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties. RSC Adv. 2019;9(16):9126–9135.
  • Wen F, et al. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C. 2011;115(29):14025–14030.
  • Wu K, et al. Electromagnetic and microwave absorbing properties of Ni0.524/bamboo charcoal core–shell nanocomposites. Compo Sci Technol. 2008;68(1):132–139.
  • Kaufman DE, et al. A vector solution for electromagnetic wave scattering from a rough surface of arbitrary dielectric constant. Radio Sci. 2016;6(1):7–20.
  • Sakho I, et al. Maxwell’s equations. Homburg: John Wiley; 2018. p. 251–267.
  • Zhao T, et al. Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method. Mater Res Bull Int J Report Res Cryst Growth Mater Prep Charact. 2018;102(6):153–159.
  • Berceli T. Microwave filters, impedance-matching networks, and coupling structures. Proc IEEE. 2015;53(7):766.
  • Liu S, et al. Optimized impedance matching and enhanced microwave absorbing performance of porous flaky Fe4N wrapped with SiO2. J Magn Magn Mater. 2021;536-:536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.