127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Carbon superstructure nanoflower derived from self-assembly of polyimide for superior lithium storage

& ORCID Icon
Pages 2525-2534 | Received 21 Nov 2022, Accepted 30 Apr 2023, Published online: 09 May 2023

References

  • Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–657.
  • Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19–29.
  • Wu FX, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020;49:1569–1614.
  • Nitta N, Wu FX, Lee JT, et al. Li-ion battery materials: present and future. Mater Today. 2015;18:252–264.
  • Wu FX, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energ Environ Sci. 2017;10:435–459.
  • Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334:928–935.
  • Nitta N, Yushin G. High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Char. 2014;31:317–336.
  • Cai WL, Yan C, Yao YX, et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew Chem Int Edit. 2021;60:13007–13012.
  • Guo BK, Wang XQ, Fulvio PF, et al. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv Mater. 2011;23:4661–4666.
  • Ali T, Muhammad N, Qian Y, et al. Recent advances in material design and reactor engineering for electrocatalytic ambient nitrogen fixation. Mater. Chem. Front. 2022;6:843–879.
  • Zou LL, Kitta M, Hong JH, et al. Fabrication of a spherical superstructure of carbon nanorods. Adv Mater. 2019;31:1900440.
  • Li YH, Xiao K, Huang C, et al. Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology. Nano-Micro Lett. 2021;13:1–14.
  • Hou CC, Zou LL, Wang Y, et al. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew Chem Int Edit. 2020;59:21360–21366.
  • Cao L, Dai PC, Tang J, et al. Spherical superstructure of boron nitride nanosheets derived from boron-containing metal-organic frameworks. J Am Chem Soc. 2020;142:8755–8762.
  • Choi IY, Lee J, Ahn H, et al. High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew Chem Int Edit. 2015;54:10497–10501.
  • Jeon SS, An HH, Yoon CS, et al. Synthesis of ultra-thin polypyrrole nanosheets for chemical sensor applications. Polymer. 2011;52:652–657.
  • Wei TT, Peng PP, Ji YR, et al. Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J Energy Chem. 2022;71:400–410.
  • Yi T-F, Wei T-T, Li Y, et al. Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater. 2020;26:165–197.
  • Peng H, Qi SL, Miao Q, et al. Hierarchical polyimide-derived nitrogen self-doped carbon nanoflowers for large operating voltage aqueous supercapacitor. J Energy Storage. 2020;30:101493.
  • Tyson JA, Mirabello V, Calatayud DG, et al. Thermally reduced graphene oxide nanohybrids of chiral functional naphthalenediimides for prostate cancer cells bioimaging. Adv Funct Mater. 2016;26:5641–5657.
  • Shtukenberg AG, Punin YO, Gunn E, et al. Spherulites. Chem Rev. 2012;112:1805–1838.
  • Granasy L, Pusztai T, Tegze G, et al. Growth and form of spherulites. Phys Rev E. 2005;72:011605.
  • Prokofiev AV, Assmus W, Removic-Langer K, et al. Crystal growth and magnetic properties of the copper coordination polymer [Cu(mu-C2O4)(4-aminopyridine)(2)(H2O)(n). Cryst Res Technol. 2007;42:394–399.
  • Bassett DC. Crystal-growth and the properties of polymers. Nato Adv Sci I B-Phy. 1989;210:267–273.
  • Ali T, Qiao W, Zhang D, et al. Surface sulfur vacancy engineering of metal sulfides promoted desorption of hydrogen atoms for enhanced electrocatalytic hydrogen evolution. J Phys Chem C. 2021;125:12707–12712.
  • Zhang ZP, Marson RL, Ge ZS, et al. Simultaneous nano- and microscale control of nanofibrous microspheres self-assembled from star-shaped polymers. Adv Mater. 2015;27:3947–3952.
  • Yoo HG, Byun M, Jeong CK, et al. Performance enhancement of electronic and energy devices via block copolymer self-assembly. Adv Mater. 2015;27:3982–3998.
  • Ikkala O, ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science. 2002;295:2407–2409.
  • Percec V, Ahn CH, Ungar G, et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature. 1998;391:161–164.
  • Ali T, Yan C. 2 d Materials for inhibiting the shuttle effect in advanced lithium-sulfur batteries. Chemsuschem. 2020;13:1447–1479.
  • Qie L, Chen WM, Wang ZH, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24:2047–2050.
  • Horvath F, Gombar T, Varga J, et al. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128:925–935.
  • Varga J. Supermolecular structure of isotactic polypropylene. J Mater Sci. 1992;27:2557–2579.
  • Jessl S, Copic D, Engelke S, et al. Hydrothermal coating of patterned carbon nanotube forest for structured lithium-ion battery electrodes. Small. 2019;15:1901201.
  • Wu Q, Liu JQ, Yuan CP, et al. Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries. Appl Surf Sci. 2017;425:1082–1088.
  • Sankar S, Saravanan S, Ahmed ATA, et al. Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery. Mater Lett. 2019;240:189–192.
  • Xiao HH, Ma GQ, Tan JY, et al. Three-dimensional hierarchical ZnCo2O4@C3N4-B nanoflowers as high-performance anode materials for lithium-ion batteries. Rsc Adv. 2020;10:32609–32615.
  • Wang LL, Zhang HT, Wang YL, et al. Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS2/C interoverlapped superstructure with robust charge transfer networks. J Mater Chem A. 2020;8:15002–15011.
  • Zhu HL, Shen F, Luo W, et al. Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy. 2017;33:37–44.
  • Ali T, Wang H, Iqbal W, et al. Electro-Synthesis of organic compounds with heterogeneous catalysis. Adv Sci. 2022;10:2205077.
  • Wang WH, Shi L, Lan DN, et al. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J Power Sources. 2018;377:1–6.
  • Byles BW, Clites M, Cullen DA, et al. Improved electrochemical cycling stability of intercalation battery electrodes via control of material morphology. Ionics. 2019;25:493–502.
  • Mullen K. Graphene as a target for polymer synthesis. Adv Polym Sci. 2013;262:61–92.
  • Peng H, Qi S, Miao Q, et al. Formation of nitrogen-doped holey carbon nanosheets via self-generated template assisted carbonization of polyimide nanoflowers for supercapacitor. J Power Sources. 2021;482:228993.
  • Baumgartner B, Bojdys MJ, Unterlass MM. Geomimetics for green polymer synthesis: highly ordered polyimides via hydrothermal techniques. Polym Chem-Uk. 2014;5:3771–3776.
  • Sun CZ, Wu T, Wang JN, et al. Favorable lithium deposition behaviors on flexible carbon microtube skeleton enable a high-performance lithium metal anode. J Mater Chem A. 2018;6:19159–19166.
  • Ahmad A, Wu HP, Guo YF, et al. A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. Rsc Adv. 2016;6:33287–33294.
  • Zhao GG, Zou GQ, Qiu XQ, et al. Rose-like N-doped porous carbon for advanced sodium storage. Electrochim Acta. 2017;240:24–30.
  • Ling Z, Wang ZY, Zhang MD, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater. 2016;26:111–119.
  • Wu D, Yi C, Wang Y, et al. Preparation and gas permeation of crown ether-containing co-polyimide with enhanced CO2 selectivity. J Membr Sci. 2018;551:191–203.
  • Wei W, Liang HW, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew Chem Int Edit. 2014;53:1570–1574.
  • Xing T, Zheng Y, Li LH, et al. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano. 2014;8:6856–6862.
  • Lai LF, Potts JR, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energ Environ Sci. 2012;5:7936–7942.
  • Zhu C, Yang B, Zhang Y, et al. High-level pyrrolic/pyridinic N-doped carbon nanoflakes from pi-fused polyimide for anodic lithium storage. Chemistryselect. 2017;2:9007–9013.
  • Yi T-F, Pan J-J, Wei T-T, et al. NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today. 2020;33:100894.
  • Yi T-F, Qiu L-Y, Mei J, et al. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Science Bulletin. 2020;65:546–556.
  • Vinayan BP, Nagar R, Raman V, et al. Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem. 2012;22:9949–9956.
  • Wang Y, Deng YH, Qu QT, et al. Ultrahigh-capacity organic anode with high rate capability and long cycle life for lithium-ion batteries. Acs Energy Lett. 2017;2:2140–2148.
  • Wang J, Yao HY, Du CY, et al. Polyimide Schiff base as a high-performance anode material for lithium-ion batteries. J Power Sources. 2021;482:228931.
  • Li SB, Fei B. Two-dimensional transition metal-based electrocatalyst and their application in water splitting. Mater Sci Technol. 2022;38:535–555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.