127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure and second-phase strengthening mechanisms of CuTeCrY alloy

, , , , , , & show all
Pages 2535-2543 | Received 26 Dec 2022, Accepted 02 May 2023, Published online: 22 May 2023

Reference

  • Chen L, Han JN, Zhou BW, et al. Effects of rolling and annealing on microstructures and properties of Cu–Mg–Te–Y alloy. Trans Nonferrous Met Soc China. 2014;24(4):1046–1052.
  • Zhang X, Han J, Chen L, et al. Effects of B and Y additions on the microstructure and properties of Cu–Mg–Te alloys. J Mater Res. 2013;28(19):2747–2752.
  • Zeng T, Jiao L, Zhu DC, et al. The friction and wear properties of Cu-Te-Li alloys with high-strength and high-conductivity. Appl Mech Mater. 2014;599:153–159. Trans Tech Publications Ltd.
  • Huang D, Han R, Wang Y, et al. The Cu–Te system: phase relations determination and thermodynamic assessment. J Alloys Compd. 2021;855:157373.
  • Shen Z, Lin Z, Shi P, et al. Enhanced strength, ductility and electrical conductivity of Cu–Te alloys via dynamic recrystallization and precipitation. Mater Sci Eng A. 2021;820(2):141548.
  • Fu Q, Li B, Gao M, et al. Quantitative mechanisms behind the high strength and electrical conductivity of Cu-Te alloy manufactured by continuous extrusion. J Mater Sci Technol. 2022;121:9–18.
  • Goux L, Opsomer K, Degraeve R, et al. Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells. Appl Phys Lett. 2011;99(5):053502.
  • Aydın ZY, Malekghasemi S, Abaci S. Underpotential co-deposition of ternary Cu-Te-Se semiconductor nanofilm on both flexible and rigid substrates. Appl Surf Sci. 2019;470:658–667.
  • Pashinkin AS, Pavlova LM. Standard functions of formation and thermodynamic stability of compounds in the Cu-Te system. Inorg Mater. 2005;41(10):1050–1054.
  • Kurbangulov AR, Tsygankova1 LV, Tikhonov EV, et al. Model calculation of the phase diagram of Cu-Te. IOP Conf Ser Mater Sci Eng. 2023;1008:012053. doi:10.1088/1757-899X/1008/1/012053
  • Pashinkin AS, Fedorov VA. Phase equilibria in the Cu-Te system. Inorg Mater. 2003;39(6):539–554.
  • Cai ZQ, Zhu CK, Zhu DC, et al. Effect of alloy elements on the antioxidant properties of Cu-Te-Cr alloys. J Funct Mater. 2009;40(4):567–569.
  • Zhu DC, Sun Y, Song MZ, et al. Effect of alloy elements on the microstructure and properties of Cu-Te-Cr alloys during aging process. J Sichuan Univ (Eng Sci Ed). 2007;39(5):97–100.
  • Jiang L, Jiang F, Dai C, et al. Pre-deformation and aging characteristics of Cu-Te-Zr alloy. Chin J Nonferr Met. 2010;20(5):878–884.
  • Deng LX, Gong LK, Yin F, et al. Effects of trace Te on microstructure and properties of Cu-Cr-Zr alloy. Hot Working Technol. doi:10.14158/j.cnki
  • Han JN, Chen L, Zhou BW, et al. Annealing process of Cu-Mg-Te-Y alloy. Rare Met Mater Eng. 2014;43(8):2038–2042.
  • Chen L, Zhou BW, Han JN, et al. Effects of alloying and deformation on microstructures and properties of Cu-Mg-Te-Y alloys. Trans Nonferrous Met Soc China. 2013;23(12):3697–3703.
  • Fu H, Sheng X, Wei L, et al. Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy. Mater Sci Eng A. 2017;700.
  • Peng L, Xie H, Huang G, et al. The phase transformation and strengthening of a Cu-0.71wt% Cr alloy. J Alloys Compd. 2017;708:1096–1102.
  • Pashinkin AS, Fedorov VA. Phase equilibria in the Cu-Te system. Inorg Mater. 2003;39(6):539–554.
  • Kaur I, Gust W, Kozma L. Handbook of grain and interphase boundary diffusion data. Stuttgart: Ziegler Press. 1; 1989.
  • Batra IS, Dey GK, Kulkarni UD, et al. Microstructure and properties of a Cu-Cr-Zr alloy. J Nucl Mater. 2001;299(2):91–100.
  • Muzyk M, Kurzydowski K. Generalised stacking fault energies of copper alloys – Density functional theory calculations. J Min Metall Sect B Metall. 2019;55:20–20.
  • Mabuchi M, Higashi K. Strengthening mechanism of Mg-Si alloy. Acta Mater. 1996;44(11):4611–4618.
  • Freudenberger J, Lyubimova J, Gaganov A, et al. Non-destructive pulsed field CuAg-solenoids. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2010;527:2004–2013.
  • Liu Y, Li Z, Jiang YX, et al. The microstructure evolution and properties of a Cu-Cr-Ag alloy during thermal-mechanical treatment. J Mater Res. 2017;32(7):1324–1332.
  • Neite G, Nembach E. Hardening mechanisms in the nimonic alloy. Mater Sci. 1985;29:177–319.
  • Lei Q, Xiao Z, Hu WP, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Mater Sci Eng A. 2017;697:37–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.