101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Corrosion protection of mild-steel in 1M HCl using nanocomposite from Triumfetta rhomboidei

, & ORCID Icon
Pages 2562-2576 | Received 23 Nov 2022, Accepted 30 Apr 2023, Published online: 14 May 2023

References

  • Cicek V. Corrosion engineering. New Jersey: John Willey; 2014. 1–266. doi:10.1002/9781118720837.
  • Chigondo M, Chigondo F. Recent natural corrosion inhibitors for mild steel: An overview. J Chem. 2016;2016:1–7. doi:10.1155/2016/6208937.
  • Madkour P. A short introduction to corrosion and its control. 2019. https://www.academia.edu/14792955/a_short_introduction_to_corrosion_and_its_control.
  • Doss JR, Shanahan MH, Wohl CJ, et al. Synthesis, characterization and evaluation of urethane co-oligomers containing pendant fluoroalkyl ether groups. Prog Org Coatings. 2016;95:72–78. doi:10.1016/J.PORGCOAT.2016.02.003.
  • Jiang C-C, Cao Y-K, Xiao G-Y, et al. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates. RSC Adv. 2017;7:7531–7539. doi:10.1039/c6ra25841g.
  • de Armentia SL, Pantoja M, Abenojar J, et al. Development of silane-based coatings with zirconia nanoparticles combining wetting, tribological, and aesthetical properties. Coatings. 2018;8(10):368. doi:10.3390/coatings8100368.
  • Habib S, Fayyed E, Shakoor RA, et al. Improved self-healing performance of polymeric nanocomposites reinforced with talc nanoparticles (TNPs) and urea-formaldehyde microcapsules (UFMCs). Arab J Chem. 2021;14:102926. doi:10.1016/j.arabjc.2020.102926.
  • Atta AM, Allohedan HA, El-Mahdy GA, et al. Application of stabilized silver nanoparticles as thin films as corrosion inhibitors for carbon steel alloy in 1M hydrochloric acid. J Nanomater. 2013;2013:1–8. doi:10.1155/2013/580607.
  • Solomon MM, Gerengi H, Umoren SA. Carboxymethyl cellulose/silver nanoparticles composite: synthesis, characterization and application as a benign corrosion inhibitor for St37 steel in 15% H2SO4 medium. ACS Appl Mater Interfaces. 2017;9:6376–6389. doi:10.1021/acsami.6b14153.
  • Quadri TW, Olasunkanmi LO, Fayemi OE, et al. Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega. 2017;2:8421–8437. doi:10.1021/acsomega.7b01385.
  • Odusote JK, Asafa TB, Oseni JG, et al. Inhibition efficiency of gold nanoparticles on corrosion of mild steel, stainless steel and aluminium in 1M HCl solution. Mater Today Proc. 2021;38:578–583. doi:10.1016/j.matpr.2020.02.984.
  • Abdel-Gaber AM, Awad R, Rahal HT, et al. Electrochemical behavior of composite nanoparticles on the corrosion of mild steel in different media. J Bio- Tribo-Corros. 2019;5:1–9. doi:10.1007/s40735-019-0241-9.
  • Kouhi S, Ghamari B, Yeganeh R. The effect of nanoparticle coating on anticorrosion performance of centrifugal pump blades. Jordan J Mech Ind Eng. 2018;12:117–122.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12:908–931. doi:10.1016/j.arabjc.2017.05.011.
  • Jain P, Patidar B, Bhawsar J. Potential of nanoparticles as a corrosion inhibitor: a review. J Bio- Tribo-Corros. 2020;6:1–12. doi:10.1007/s40735-020-00335-0.
  • Kango S, Kalia S, Celli A, et al. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites – a review. Prog Polym Sci. 2013;38:1232–1261. doi:10.1016/j.progpolymsci.2013.02.003.
  • Khamis EA, Hamdy A, Morsi RE. Magnetite nanoparticles/polyvinyl pyrrolidone stabilized system for corrosion inhibition of carbon steel. Egypt J Pet. 2018;27:919–926. doi:10.1016/j.ejpe.2018.02.001.
  • Makarov VV, Love AJ, Sinitsyna OV, et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35–44. doi:10.32607/20758251-2014-6-1-35-44.
  • Essien EA, Kavaz D, Ituen EB, et al. Synthesis, characterization and anticorrosion property of olive leaves extract-titanium nanoparticles composite. J Adhes Sci Technol. 2018;32:1773–1794. doi:10.1080/01694243.2018.1445800.
  • Kandregula G, Chinthakuntla A, Rao K, et al. Green synthesis of TiO2 nanoparticles using hibiscus flower extract. Int Conf Emerg Technol Mech Sci. 2014;2:79–82.
  • Moghaddam AB, Namvar F, Moniri M. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules. 2015;20(9):16540–16565. doi:10.3390/molecules200916540.
  • Subhapriya S, Gomathipriya P. Green synthesis of titanium dioxide (TiO2) nanoparticles by trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog. 2018;116:215–220. doi:10.1016/j.micpath.2018.01.027.
  • Vu NSH, Hien PV, Mathesh M, et al. Improved corrosion resistance of steel in ethanol fuel blend by titania nanoparticles and aganonerion polymorphum leaf extract. ACS Omega. 2019;4:146–158. doi:10.1021/acsomega.8b02084.
  • Olasehinde EF, Agbaffa BE, Adebayo MA, et al. Corrosion protection of mild steel in acidic medium by titanium-based nanocomposite of chromolaena odorata leaf extract. Mater Chem Phys. 2022;281:125856. doi:10.1016/j.matchemphys.2022.125856.
  • Idrees M, Batool S, Kalsoom T, et al. Biosynthesis of silver nanoparticles using sida acuta extract for antimicrobial actions and corrosion inhibition potential. Environ Technol. 2019;40:1071–1078. doi:10.1080/09593330.2018.1435738.
  • Narenkumar J, Parthipan P, Madhavan J, et al. Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environ Sci Pollut Res. 2018;25:5412–5420. doi:10.1007/s11356-017-0768-6.
  • Olasehinde EF, Agbaffa EB, Adebayo MA, et al. Corrosion inhibition of mild steel in 1 M HCl by methanolic chromolaena odorata leaf extract: experimental and theoretical studies. J Bio- Tribo-Corros. 2022;8:105. doi:10.1007/s40735-022-00704-x.
  • Agbaffa EB, Akintemi EO, Uduak EA, et al. Corrosion inhibition potential of the methanolic crude extract of mimosa pudica leaves for mild steel in 1 M hydrochloric acid solution by weight loss method. Sci Lett. 2021;15(1):23–42. doi:10.24191/sl.v15i1.11791.
  • Aigbogun JA, Adebayo MA. Green inhibitor from thaumatococcus daniellii benn for corrosion mitigation of mild steel in 1M HCl. Curr Res Green Sustain Chem. 2021;4:100201. doi:10.1016/j.crgsc.2021.100201.
  • Adebayo MA, Akande SO, Olorunfemi AD, et al. Equilibrium and thermodynamic characteristics of the corrosion inhibition of mild steel using sweet prayer leaf extract in alkaline medium. Prog Chem Biochem Res. 2021;4(4):80–91.
  • Sahoo H, Mandal P, Sagar R, et al. Evaluation of lactogenic activity of triumfetta rhomboidea L. root: validating its traditional usage. J Exp Integr Med. 2016;6:26–39. doi:10.5455/jeim.160216.or.146.
  • Iroha NB, Madueke NA. Effect of triumfetta rhomboidea leaves extract on the corrosion resistance of carbon steel in acidic environment. Chem Sci Int J. 2018;25:1–9. doi:10.9734/csji/2018/45807.
  • Sundrarajan M, Bama K, Bhavani M, et al. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B Biol. 2017;171:117–124. doi:10.1016/j.jphotobiol.2017.05.003.
  • Ma HY, Wang TL, Chang PY, et al. High refractive organic–inorganic hybrid films prepared by low water sol-gel and UV-irradiation processes. Nanomaterials. 2016;6:1–10. doi:10.3390/nano6030044.
  • Kantheti P, Alapati P. Green synthesis of TiO2 nanoparticles using ocimum basilicum extract and its characterization. Int J Chem Stud. 2018;6:670–674. Available from: http://www.chemijournal.com/archives/2018/vol6issue4/PartM/6-4-80-915.pdf.
  • Wang K, Zhuo Y, Chen J, et al. Crystalline phase regulation of anatase-rutile TiO2 for the enhancement of photocatalytic activity. RSC Adv. 2020;10:43592–43598. doi:10.1039/d0ra09421h.
  • Zhang W. Nanoparticle aggregation: principles and modeling. Adv Exp Med Biol. 2014;811:20–43. doi:10.1007/978-94-017-8739-0_2.
  • Li Z, Liu D, Cai Y, et al. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel. 2019;257:116031. doi:10.1016/j.fuel.2019.116031.
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87:1051–1069. doi:10.1515/pac-2014-1117.
  • Storck S, Bretinger H, Maier WF. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl Catal A Gen. 1998;174:137–146. doi:10.1016/S0926-860X(98)00164-1.
  • Gupta M, Mishra J, Pitre KS. Corrosion and inhibition effects of mild steel in hydrochloric acid solutions containing organophosphonic acid. Int J Corros. 2013;2013:1–6. doi:10.1155/2013/582982.
  • Sanatkumar BS, Nayak J, Shetty AN. Influence of 2-(4-chlorophenyl)-2-oxoethyl benzoate on the hydrogen evolution and corrosion inhibition of 18 Ni 250 grade weld aged maraging steel in 1.0 M sulfuric acid medium. Int J Hydrogen Energy. 2012;37:9431–9442. doi:10.1016/j.ijhydene.2012.02.165.
  • Solomon MM, Umoren SA. Performance assessment of poly (methacrylic acid)/silver nanoparticles composite as corrosion inhibitor for aluminium in acidic environment. J Adhes Sci Technol. 2015;29:2311–2333. doi:10.1080/01694243.2015.1066235.
  • Chafiq M, Chaouiki A, Lgaz H, et al. Synthesis and corrosion inhibition evaluation of a new schiff base hydrazone for mild steel corrosion in HCl medium: electrochemical, DFT, and molecular dynamics simulations studies. J Adhes Sci Technol. 2020;34:1283–1314. doi:10.1080/01694243.2019.1707561.
  • Ituen E, Akaranta O, James A. Electrochemical and anticorrosion properties of 5-hydroxytryptophan on mild steel in a simulated well-acidizing fluid. J Taibah Univ Sci. 2017;11:788–800. doi:10.1016/j.jtusci.2017.01.005.
  • Li X, Tang L, Li L, et al. Synergistic inhibition between o-phenanthroline and chloride ion for steel corrosion in sulphuric acid. Corros Sci. 2006;48:308–321. doi:10.1016/j.corsci.2004.11.029.
  • Muthukrishnan P, Prakash P, Jeyaprabha B, et al. Stigmasterol extracted from ficus hispida leaves as a green inhibitor for the mild steel corrosion in 1 M HCl solution. Arab J Chem. 2019;12:3345–3356. doi:10.1016/j.arabjc.2015.09.005.
  • Atta AM, El-Mahdy GA, Al-Lohedan HA, et al. A new green ionic liquid-based corrosion inhibitor for steel in acidic environments. Molecules. 2015;20:11131–11153. doi:10.3390/molecules200611131.
  • Muthukrishnan P, Jeyaprabha B, Prakash P. Adsorption and corrosion inhibiting behavior of lannea coromandelica leaf extract on mild steel corrosion. Arab J Chem. 2017;10:S2343–S2354. doi:10.1016/j.arabjc.2013.08.011.
  • Díaz-Jiménez V, Arellanes-Lozada P, Likhanova NV, et al. Verpoort, investigation of sulfonium-iodide-based ionic liquids to inhibit corrosion of API 5L X52 steel in different flow regimes in acid medium. ACS Omega. 2022;7:42975–42993. doi:10.1021/acsomega.2c05192.
  • Baran E, Cakir A, Yazici B. Inhibitory effect of gentiana olivieri extracts on the corrosion of mild steel in 0.5 M HCl: electrochemical and phytochemical evaluation. Arab J Chem. 2019;12:4303–4319. doi:10.1016/j.arabjc.2016.06.008.
  • Ansari KR, Quraishi MA. Bis-Schiff bases of isatin as new and environmentally benign corrosion inhibitor for mild steel. J Ind Eng Chem. 2014;20:2819–2829. doi:10.1016/j.jiec.2013.11.014.
  • Bondarenko SA, Ragoisha AG. Progress in chemometrics research. In: Pomerantsev AL, New York: Nova Science Publishers; 2005. p. 89–102.
  • Singh A, Soni N, Deyuan Y, et al. A combined electrochemical and theoretical analysis of environmentally benign polymer for corrosion protection of N80 steel in sweet corrosive environment. Results Phys. 2019;13:102116. doi:10.1016/j.rinp.2019.02.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.