116
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of WE43/TiC surface composites using friction stir processing: a parametric study

, &
Pages 2577-2594 | Received 24 Jan 2023, Accepted 03 May 2023, Published online: 16 May 2023

References

  • Easton M, Beer A, Barnett M, et al. Magnesium alloy applications in automotive structures. JOM. 2008;60:57–62.
  • Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications. Corros Sci. 2014;86:1–6.
  • Chen TJ, Ma Y, Li B, et al. Friction and wear properties of permanent mould cast AZ91D magnesium alloy. Mater Sci Technol. 2007;23:937–944.
  • Yoo YH, Le DP, Kim JG, et al. Corrosion behaviour of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5% NaCl solution. Thin Solid Films. 2008;516(11):3544–3548.
  • Barmouz M, Givi MKB, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, micro-hardness, wear and tensile behaviour. Mater Charact. 2011;62:108–117.
  • Argade GR, Kandasamy K, Panigrahi SK, et al. Corrosion behaviour of a friction stir processed rare-earth added magnesium alloy. Corros Sci. 2012;58:321–326.
  • Azizieh M, Larki A, Tahmasebi N, et al. Wear behavior of AZ31/Al2O3 magnesium matrix surface nanocomposite fabricated via friction stir processing. J Mater Eng Perform. 2018;27:2010–2017.
  • Dadaei M, Omidvar H, Bagheri B, et al. The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy. Int J Mater Res. 2014;105(4):369–374.
  • Venkataraman B, Sundararajan G. Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. wear. 2000;245(1–2):22–38.
  • Mahmoud ERI, Takahashi M, Shibayanagi T, et al. Fabrication of surface-hybrid-MMCs layer on aluminum plate by friction stir processing and its wear characteristics. Mater Trans. 2009;50(7):1824–1831.
  • Ma ZY. Friction stir processing technology: a review. Metall Mater Trans A. 2008;39(3):642–658.
  • Sharma V, Prakash U, Kumar B, et al. Surface composites by friction stir processing: a review. J Mater Process Technol. 2015;224:117–134.
  • Sun N, Apelian D. Friction stir processing of aluminum cast alloys for high performance applications. JOM-J Min Met Mats. 2011;63:44–50.
  • Navazani M, Dehghani K. Investigation of microstructure and hardness of Mg/TiC surface composite fabricated by friction stir processing (FSP). Procedia Mater Sci. 2015;11:509–514.
  • Berbon PB, Bingel WH, Mishra RS, et al. Friction stir processing: a tool to homogenize nano composite aluminium alloys. Scripta Mater. 2001;44:61–66.
  • Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. J Mater Sci Eng A. 2003;341:307–310.
  • Kim C-S, Sohn I, Nezafati M, et al. Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J Mater Sci. 2013;48:4191–4204.
  • Heidarzadeh A, Jabbari M, Esmaily M. Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol. 2015;77:1819–1829.
  • Iwaszko J, Kudła K, Fila K. Friction stir processing of the AZ91magnesium alloy with SiC particles. Arch Mater Sci Eng. 2016;77:85.
  • Cai Y, Tan MJ, Shen GJ, et al. Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. Mater Sci Eng A. 2000;282:232–239.
  • Sanaty-Zadeh A, Rohatgi PK. Comparison between current models for thestrength of particulate-reinforced metal matrix nanocomposites with emphasison consideration of Hall-Petch effect. Mater Sci Eng A. 2012;531:112–118.
  • Zhao L, Cui C, Wang Q, et al. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications. Corros Sci. 2010;52(7):2228–2234.
  • Sharifitabar M, Sarani A, Khorshahian S, et al. Fabrica-tion of 5052Al/Al2O3nanoceramic particle reinforced composite via friction stir processing route. Mater Design. 2011;32:4164–4172.
  • Shang J, Ke L, Liu F, et al. Aging behavior of nano SiC particles reinforced AZ91D composite fabricated via friction stir processing. J Alloys Compd. 2019;797:1240–1248.
  • Inácio PL, Nogueira F, Ferreira FB, et al. Functionalized material production via multi-stack upward friction stir processing (UFSP). Mater Manuf Processes. 2022;37(1):11–24.
  • Vidal C, Alves P, Alves MM, et al. Fabrication of a biodegradable and cytocompatible magnesium/nanohydroxyapatite/fluorapatite composite by upward friction stir processing for biomedical applications. J Mech Behav Biomed Mater. 2022;129:105137.
  • Azizieh M, Kokabi A, Abachi H. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Design. 2011;32:2034–2041.
  • Palanivel R, Koshy Mathews P, Murugan N, et al. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater Des. 2012;40:7–16.
  • Zang Q, Li X, Chen H, et al. Microstructure and mechanical properties of AZ31/ZrO2 composites prepared by friction stir processing with high rotation speed. Front Mater. 2020;7:1–9.
  • Zhao S, Chen H, Nai X, et al. Effect of Ti content on microstructure and mechanical properties of SiCf/SiC composites/GH536 superalloy joints brazed with CoFeCrNiCuTi high entropy filler. J Manuf Process. 2023;85:132–140.
  • Prakash C, Singh S, Gupta M. Synthesis, characterization, corrosion resistance and in-vitro bioactivity behaviour of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Materials. 2018;11(9):1602.
  • Aldajah SH, Ajayi OO, Fenske GR, et al. Effect of friction stir processing on the tribological performance of high carbon steel. Wear. 2009;267(1–4):350–355.
  • Anbu-selvan S, Ramanathan S. Dry sliding wear behavior of as-cast ZE41A magnesium alloy. Mater Des. 2010;31:1930–1936.
  • Mishra RS, Mahoney MW. Friction stir welding and processing. Materials Park: ASM International; 2007.
  • Yang Y, Zhao Y, Kai X, et al. Superplasticity behavior and deformation mechanism of the in-situ Al3Zr/6063Al composites processed by friction stir processing. J Alloys Compd. 2017;710:225–233.
  • Darras BM, Khraisheh MK, Abu-Farha FK, et al. Friction stir processing of commercial AZ31 magnesium alloy. J Mater Process Technol. 2007;191(1–3):77–81.
  • El-Rayes MM, El-Danaf EA. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of aluminum alloy 6082. J Mater Process Technol. 2012;212(5):1157–1168.
  • Chen CF, Kao PW, Chang LW, et al. Effect of processing parameters on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in-situ composite produced by friction stir processing. Metall Mater Trans A. 2009;41:513–522.
  • Elangovan K, Balasubramanian V. Effect of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol. 2007;38:285–295.
  • Asadi P, Faraji G, Besharati MK. Producing of AZ91/SiC composite by friction stir processing (FSP). Int J Adv Manuf Technol. 2010;51:247–260.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78.
  • McNelley T, Swaminathan R, Su S, et al. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater. 2008;58(5):349–354.
  • Woo W, Choo H, Brown DW, et al. Influence of the tool pin and shoulder on microstructure and natural aging kinetics in a friction-stir-processed 6061-T6 aluminum alloy. Metall Mater Trans A Phys Metall Mater Sci. 2007;38(1):69–76.
  • Amirafshar A, Pouraliakbar H. Effect of tool pin design on the microstructural evolutions and tribological characteristics of friction stir processed structural steel. Meas J Int Meas Confed. 2015;68:111–116.
  • Patel VV, Badheka V, Kumar A. Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy. Mater Manuf Process. 2016;31(12):1573–1582.
  • Gangil N, Maheshwari S, Siddiquee AN. Influence of tool pin and shoulder geometries on microstructure of friction stir processed AA6063/SiC composites. Mech Ind. 2018;19:211–217.
  • Gangil N, Maheshwari S, Nasr EA, et al. Another approach to characterize particle distribution during surface composite fabrication using friction stir processing. Metals. 2018;8:568–576.
  • Gangil N, Siddiquee AN, Maheshwari S, et al. State of the art of ex-situ aluminum matrix composite fabrication through friction stir processing. Arch Metall Mater. 2018;63:719–738.
  • Zhang Z, Chen DL. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A. 2008;483:148–152.
  • Qu J, Xu H, Feng Z, et al. Improving the tribological characteristics of aluminum 6061 alloy by surface compositing with sub-micro-size ceramic particles via friction stir processing. Wear. 2011;271:1940–1945.
  • Kurt A, Uygur I, Cete E. Surface modification of aluminium by friction stir processing. J Mater Process Tech. 2011;211:313–317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.