104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced adsorption films of dendrimers on mild steel for super protection

, , &
Pages 2990-3005 | Received 12 Feb 2023, Accepted 24 Jun 2023, Published online: 11 Jul 2023

References

  • Egbo MK. A fundamental review on composite materials and some of their applications in biomedical engineering. J King Saud Univ - Eng Sci. 2021;33(8):557–568. doi:10.1016/j.jksues.2020.07.007
  • Yaro AS, Khadom AA, Wael RK. Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid. Alexandria Eng J. 2013;52(1):129–135. doi:10.1016/j.aej.2012.11.001
  • Li X, Wang H, Hu C, et al. Characteristics of biofilms and iron corrosion scales with ground and surface waters in drinking water distribution systems. Corros Sci. 2015;90:331–339. doi:10.1016/j.corsci.2014.10.028
  • Husband PS, Boxall JB. Asset deterioration and discolouration in water distribution systems. Water Res. 2011;45(1):113–124. doi:10.1016/j.watres.2010.08.021
  • Abd El Aal EE, Abd El Wanees S, Farouk A, et al. Factors affecting the corrosion behaviour of aluminium in acid solutions. II. inorganic additives as corrosion inhibitors for Al in HCl solutions. Corros Sci. 2013;68:14–24. doi:10.1016/j.corsci.2012.09.038
  • Yang Y, Khan F, Thodi P, et al. Corrosion induced failure analysis of subsea pipelines. Reliab Eng Syst Saf. 2017;159:214–222. doi:10.1016/j.ress.2016.11.014
  • Haque J, Srivastava V, Verma C, et al. Experimenta land quantum chemical analysis of 2-amino-3-((4-((S)-2-amino-2-carboxyethyl)-1H-imidazol-2-yl)thio) propionic acid as new and green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. J Mol Liq. 2017;225:848–855. doi:10.1016/j.molliq.2016.11.011
  • Ye Y, Zou Y, Jiang Z, et al. An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1 M HCl solution. J Alloys Compd. 2020;815(121019). doi:10.1016/j.jallcom.2019.152338.
  • Fakhry H, El Faydy M, Benhiba F, et al. A newly synthesized quinoline derivative as corrosion inhibitor for mild steel in molar acid medium: characterization (SEM/EDS), experimental and theoretical approach. Colloids Surf, A. 2021;610:125746. doi:10.1016/j.colsurfa.2020.125746
  • Rbaa M, Lakhrissi B. Novel oxazole and imidazole based on 8-hydroxyquinoline as a corrosion inhibition of mild steel in HCl solution: insights from experimental and computational studies. Surf Interfaces. 2019;15:43–59. doi:10.1016/j.surfin.2019.01.010
  • Xia S, Qiu M, Yu L, et al. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance. Corros Sci. 2008;50(7):2021–2029. doi:10.1016/j.corsci.2008.04.021
  • Fernine Y, Arrousse N, Haldhar R, et al. Novel thiophene derivatives as eco-friendly corrosion inhibitors for mild steel in 1 M HCl solution: characterization, electrochemical and computational (DFT and MC simulations) methods. J Env Chem Eng. 2022;10(6):108896. doi:10.1016/j.jece.2022.108891
  • Ansari MF, Tan YM, Sun H, et al. Unique iminotetrahydroberberine-corbelled metronidazoles as potential membrane active broad-spectrum antibacterial agents. Bioorg Med Chem Lett. 2022;76:129012. doi:10.1016/j.bmcl.2022.129012
  • Huang L, Yang KP, Zhao Q, et al. Corrosion resistance and antibacterial activity of procyanidin B2 as a novel environment-friendly inhibitor for Q235 steel in 1 M HCl solution. Bioelectrochemistry. 2022;143:107969. doi:10.1016/j.bioelechem.2021.107969
  • Riani P, Garbarino G, Infantes-Molina A, et al. Hydrogen from steam reforming of ethanol over cobalt nanoparticles: effect of boron impurities. Appl Catal, A. 2016;518:67–77. doi:10.1016/j.apcata.2015.10.010
  • Arrousse N, Salim R, Abdellaoui A, et al. Synthesis, characterization, and evaluation of xanthene derivative as highly effective, nontoxic corrosion inhibitor for mild steel immersed in 1 M HCl solution. J Taiwan Inst Chem Eng. 2021;120:344–359. doi:10.1016/j.jtice.2021.03.026
  • Yadav M, Sarkar TK, Purkait T. Amino acid compounds as eco-friendly corrosion inhibitor for N80 steel in HCl solution: electrochemical and theoretical approaches. J Mol Liq. 2015;212:731–738. doi:10.1016/j.molliq.2015.10.021
  • Lee C-Y, Lin T-J, Sheu H-H, et al. A study on corrosion and corrosion-wear behavior of Fe-based amorphous alloy coating prepared by high velocity oxygen fuel method. J Mater Res Technol. 2021;15:4880–4895. doi:10.1016/j.jmrt.2021.10.103
  • Singh P, Srivastava V, Quraishi MA. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J Mol Liq. 2016;216:164–173. doi:10.1016/j.molliq.2015.12.086
  • Boumhara K, Tabyaoui M, Jama C, et al. Artemisia mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1M HCl solution: electrochemical and XPS investigations. J Ind Eng Chem. 2015;29:146–155. doi:10.1016/j.jiec.2015.03.028
  • Wang X, Wang Z, Jiang X, et al. In-Situ deposition and growth of Cu2ZnSnS4Nanocrystals on TiO2Nanorod arrays for enhanced photoelectrochemical performance. J Electrochem Soc. 2017;164(13):H863–H871. doi:10.1149/2.0361713jes
  • Chevalier M, Robert F, Amusant N, et al. Enhanced corrosion resistance of mild steel in 1M hydrochloric acid solution by alkaloids extract from aniba rosaeodora plant: electrochemical, phytochemical and XPS studies. Electrochim Acta. 2014;131:96–105. doi:10.1016/j.electacta.2013.12.023
  • Tang Y, Zhang F, Hu S, et al. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. part I: gravimetric, electrochemical, SEM and XPS studies. Corros Sci. 2013;74:271–282. doi:10.1016/j.corsci.2013.04.053
  • Weng LT, Poleunis C, Bertrand P, et al. Sizing removal and functionalization of the carbon fiber surface studied by combined TOF SIMS and XPS. J Adhes Sci Technol. 1995;9(7):859–871. doi:10.1163/156856195X00743
  • Mourya P, Banerjee S, Rastogi RB, et al. Inhibition of mild steel corrosion in hydrochloric and sulfuric acid media using a thiosemicarbazone derivative. Ind Eng Chem Res. 2013;52(36):12733–12747. doi:10.1021/ie4012497
  • Gabal MA. Non-isothermal decomposition of lead oxalate-iron (II) oxalate mixture. DTA-TG, XRD. FT-IR and Mössbauer studies. J Mater Res Technol. 2021;15:5841–5848. doi:10.1016/j.jmrt.2021.11.012
  • Prashanth MK, Kumar CBP, Prathibha BS, et al. Effect of OH, NH2 and OCH3 groups on the corrosion inhibition efficacy of three new 2,4,5-trisubstituted imidazole derivatives on mild steel in acidic solutions: experimental, surface and DFT explorations. J Mol Liq. 2021;329:115587. doi:10.1016/j.molliq.2021.115587
  • Mehta RK, Gupta SK, Yadav M. Studies on pyrimidine derivative as green corrosion inhibitor in acidic environment: electrochemical and computational approach. J Env Chem Eng. 2022;10(5):108499. doi:10.1016/j.jece.2022.108499
  • Wang X, Yang H, Wang F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corros Sci. 2011;53(1):113–121. doi:10.1016/j.corsci.2010.09.029
  • Daoud D, Douadi T, Issaadi S, et al. Adsorption and corrosion inhibition of new synthesized thiophene schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros Sci. 2014;79:50–58. doi:10.1016/j.corsci.2013.10.025
  • Farsak M, Keleş H, Keleş M. A new corrosion inhibitor for protection of low carbon steel in HCl solution. Corros Sci. 2015;98:223–232. doi:10.1016/j.corsci.2015.05.036
  • Naciri M, El Aoufir Y, Lgaz H, et al. Exploring the potential of a new 1,2,4-triazole derivative for corrosion protection of carbon steel in HCl: A computational and experimental evaluation. Colloids Surf, A. 2020;597:124604. doi:10.1016/j.colsurfa.2020.124604
  • Chauhan LR, Gunasekaran G. Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corros Sci. 2007;49(3):1143–1161. doi:10.1016/j.corsci.2006.08.012
  • Hu K, Zhuang J, Ding J, et al. Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corros Sci. 2017;125:68–76. doi:10.1016/j.corsci.2017.06.004
  • Goyal M, Kumar S, Bahadur I, et al. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review. J Mol Liq. 2018;256:565–573. doi:10.1016/j.molliq.2018.02.045
  • Abdel-Azim AA, Milad R, El-Ghazawy R, et al. Corrosion inhibition efficiency of water soluble ethoxylated trimethylol propane by gravimetric analysis. Egyptian Journal of Petroleum. 2014;23(1):15–20. doi:10.1016/j.ejpe.2014.02.003
  • Singh AK, Singh P. Adsorption behaviour of o-hydroxy acetophenone benzoyl hydrazone on mild steel/hydrochloric acid interface. J Ind Eng Chem. 2015;21:552–560. doi:10.1016/j.jiec.2014.03.018
  • Chafiq M, Chaouiki A, Al-Hadeethi MR, et al. A joint experimental and theoretical investigation of the corrosion inhibition behavior and mechanism of hydrazone derivatives for mild steel in HCl solution. Colloids Surf, A. 2021;610:125744. doi:10.1016/j.colsurfa.2020.125744
  • Shimizu K, Lasia A, Boily JF. Electrochemical impedance study of the hematite/water interface. Langmuir. 2012;28(20):7914–7932. doi:10.1021/la300829c
  • Yousefi A, Javadian S, Dalir N, et al. Imidazolium-based ionic liquids as modulators of corrosion inhibition of SDS on mild steel in hydrochloric acid solutions: experimental and theoretical studies. RSC Adv. 2015;5(16):11697–11713. doi:10.1039/C4RA10995C
  • Sudheer, Quraishi MA. 2-Amino-3,5-dicarbonitrile-6-thio-pyridines: new and effective corrosion inhibitors for mild steel in 1 M HCl. Ind Eng Chem Res. 2014;53(8):2851–2859. doi:10.1021/ie401633y
  • Motamedi M, Tehrani-Bagha AR, Mahdavian M. A comparative study on the electrochemical behavior of mild steel in sulfamic acid solution in the presence of monomeric and gemini surfactants. Electrochim Acta. 2011;58:488–496. doi:10.1016/j.electacta.2011.09.079
  • Kıcır N, Tansuğ G, Erbil M, et al. Investigation of ammonium (2,4-dimethylphenyl)-dithiocarbamate as a new, effective corrosion inhibitor for mild steel. Corros Sci. 2016;105:88–99. doi:10.1016/j.corsci.2016.01.006
  • Berthier F, Diard J-P, Michel R. Distinguishability of equivalent circuits containing CPEs part I. theoretical part. J Electroanal Chem. 2001;510:1–11. doi:10.1016/S0022-0728(01)00554-X
  • Yilmaz N, Fitoz A, Ergun ÿ, et al. A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino)methyl)phenol as a corrosion inhibitor for mild steel in a highly acidic environment. Corros Sci. 2016;111:110–120. doi:10.1016/j.corsci.2016.05.002
  • Khamaysa OMA, Selatnia I, Lgaz H, et al. Hydrazone-based green corrosion inhibitors for API grade carbon steel in HCl: insights from electrochemical, XPS, and computational studies. Colloids Surf, A. 2021;626:127047. doi:10.1016/j.colsurfa.2021.127047
  • Bentiss F, Lebrini M, Lagrenée M, et al. The influence of some new 2,5-disubstituted 1,3,4-thiadiazoles on the corrosion behaviour of mild steel in 1M HCl solution: AC impedance study and theoretical approach. Electrochim Acta. 2007;52(24):6865–6872. doi:10.1016/j.electacta.2007.04.111
  • Paul PK, Yadav M. Investigation on corrosion inhibition and adsorption mechanism of triazine-thiourea derivatives at mild steel / HCl solution interface: electrochemical, XPS, DFT and monte carlo simulation approach. J Electroanal Chem. 2020;877:114599. doi:10.1016/j.jelechem.2020.114599
  • Shabani-Nooshabadi M, Ghandchi MS. Santolina chamaecyparissus extract as a natural source inhibitor for 304 stainless steel corrosion in 3.5% NaCl. J Ind Eng Chem. 2015;31:231–237. doi:10.1016/j.jiec.2015.06.028
  • Peng M, Nguyen AV, Wang J, et al. A critical review of the model fitting quality and parameter stability of equilibrium adsorption models. Adv Colloid Interface Sci. 2018;262:50–68. doi:10.1016/j.cis.2018.10.001
  • Fouda AS, Wahed HAA. Corrosion inhibition of copper in HNO3 solution using thiophene and its derivatives. Arab J Chem. 2016;9:S91–S99. doi:10.1016/j.arabjc.2011.02.014
  • Mert BD, Yüce AO, Kardaş G, et al. Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: experimental and theoretical investigation. Corros Sci. 2014;85:287–295. doi:10.1016/j.corsci.2014.04.032
  • Saraswat V, Yadav M. Improved corrosion resistant performance of mild steel under acid environment by novel carbon dots as green corrosion inhibitor. Colloids Surf, A. 2021;627. doi:10.1016/j.colsurfa.2021.127172
  • Moretti G, Guidi F, Fabris F. Corrosion inhibition of the mild steel in 0.5M HCl by 2-butyl-hexahydropyrrolo[1,2-b][1,2]oxazole. Corros Sci. 2013;76:206–218. doi:10.1016/j.corsci.2013.06.044
  • Mostafatabar AH, Bahlakeh G, Ramezanzadeh B, et al. A comprehensive electronic-scale DFT modeling, atomic-level MC/MD simulation, and electrochemical/surface exploration of active nature-inspired phytochemicals based on heracleum persicum seeds phytoextract for effective retardation of the acidic-induced corrosion of mild steel. J Mol Liq. 2021;331:115764. doi:10.1016/j.molliq.2021.115764
  • Yadav DK, Maiti B, Quraishi MA. Electrochemical and quantum chemical studies of 3,4-dihydropyrimidin-2(1H)-ones as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci. 2010;52(11):3586–3598. doi:10.1016/j.corsci.2010.06.030
  • Verma CB, Quraishi MA, Singh A. 2-Aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for mild steel in 1 M HCl: electrochemical, thermodynamic, surface and quantum chemical investigation. J Taiwan Inst Chem Eng. 2015;49:229–239. doi:10.1016/j.jtice.2014.11.029
  • Deng S, Li X, Xie X. Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corros Sci. 2014;80:276–289. doi:10.1016/j.corsci.2013.11.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.