474
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Micromechanics-based understanding of the stability of film-like austenite in steels

, , &
Pages 3300-3307 | Received 17 May 2023, Accepted 14 Aug 2023, Published online: 26 Aug 2023

References

  • McMeeking RM, Evans AG. Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc. 1982;65(5):242–246. doi:10.1111/j.1151-2916.1982.tb10426.x
  • Jacques PJ, Delannay F, Ladrière J. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Trans A; 200(32):2759–2768.
  • Timokhina IB, Hodgson PD, Pereloma EV. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Trans A. 2004;35:2331–2341. doi:10.1007/s11661-006-0213-9
  • Huo CY, Gao HL. Strain-induced martensitic transformation in fatigue crack tip zone for a high strength steel. Mater Charact. 2005;55(1):12–18. doi:10.1016/j.matchar.2005.02.004
  • Olson GB, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A. 1975: 791–795. doi:10.1007/BF02672301
  • Olson GB. Transformation plasticity and toughening. J Phys IV. 1996;6:407.
  • Zhang H, Pradeep KG, Mandal S, Ponge D, Springer H, Raabe D et al. Dynamic strain-induced transformation: an atomic scale investigation. Scr Mater. 2015;109:23–27. doi:10.1016/j.scriptamat.2015.07.010
  • Lee SJ, Lee S, De Cooman BC. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scr Mater. 2011;64(7):649–652. doi:10.1016/j.scriptamat.2010.12.012
  • Kumar G, Ghosh S, Pallaspuro S, et al. Fracture toughness characteristics of thermo-mechanically rolled direct quenched and partitioned steels. Mater Sci Eng A. 2022;840(142788).
  • Grajcar A, Kwaśny W, Zalecki W. Microstructure–property relationships in TRIP aided medium-C bainitic steel with lamellar retained austenite. Mater Sci Technol. 2015;31(7):781–794. doi:10.1179/1743284714Y.0000000742
  • Sugimoto KI. Fracture strength and toughness of ultra-high strength TRIP aided steels. Mater Sci Technol. 2009;25(9):1108–1117. doi:10.1179/174328409X453307
  • Zhao HS, Zhu X, Li W, et al. Austenite stability for quenching and partitioning treated steel revealed by colour tint-etching method. Mater Sci Technol. 2014;30(9):1008–1013. doi:10.1179/1743284714Y.0000000517
  • Wu R, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels. Metall Trans A. 2014;45:1892–1902. doi:10.1007/s11661-013-2113-0
  • Wu R, Li J, Li W, et al. Effect of metastable austenite on fracture resistance of quenched and partitioned (Q&P) sheet steels. Mater Sci Eng A. 2016;657:57–63. doi:10.1016/j.msea.2016.01.051
  • Mei Z, Morris Jr JW. Analysis of transformation-induced crack closure. Eng Fract Mech. 1991;39(3):569–573. doi:10.1016/0013-7944(91)90068-C
  • Parker ER, Zackay VF. Enhancement of fracture toughness in high strength steel by microstructural control. Eng Fract Mech. 1973;5(1):147–165. doi:10.1016/0013-7944(73)90013-1
  • Antolovich SD, Singh B. On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels. Metall Trans B. 1971;2(8):2135–2141. doi:10.1007/BF02917542
  • Antolovich SD, Singh B. Observations of martensite formation and fracture in TRIP steels. Metallurg Trans. 1970;1(12):3463–3465. doi:10.1007/BF03037885
  • Haidemenopoulos GN, Kermanidis AT, Malliaros C, et al. On the effect of austenite stability on high cycle fatigue of TRIP 700 steel. Mater Sci Eng A. 2013;573:7–11. doi:10.1016/j.msea.2013.02.015
  • Seo EJ, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 2016;113:124–139. doi:10.1016/j.actamat.2016.04.048
  • de Diego-Calderón I, Rodriguez-Calvillo P, Lara A, et al. Effect of microstructure on fatigue behavior of advanced high strength steels produced by quenching and partitioning and the role of retained austenite. Mater Sci Eng A. 2015;641:215–224. doi:10.1016/j.msea.2015.06.034
  • Eckner R, Krüger L, Ullrich C, et al. Fracture toughness of high-alloy austenitic-martensitic TRIP steels after Q&P processing. Int J Fract. 2019;215:139–151. doi:10.1007/s10704-018-0332-5
  • Olson GB. Transformation plasticity and toughening. Le J de Physique IV. 1996 Jan 1;6(C1):C1–407.
  • Xiong XC, Chen B, Huang MX, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr Mater. 2013;68(5):321–324. doi:10.1016/j.scriptamat.2012.11.003
  • Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond. 1957;241(1226):376–396.
  • Yang K, Ding W, Liu S, et al. Dominating role of film-like carbon-enriched austenite for the simultaneous improvement of strength and toughness in low-carbon steel. Steel Res Int. 2021;92(2):2000344. doi:10.1002/srin.202000344
  • Xiong ZP, Saleh AA, Marceau RK, et al. Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel. Acta Mater. 2017;134:1–15. doi:10.1016/j.actamat.2017.05.060
  • Takahashi M, Bhadeshia HKDH. A model for the microstructure of some advanced bainitic steels. Mater Trans JIM. 1991;32(8):689–696. doi:10.2320/matertrans1989.32.689
  • Ledbetter H, Dunn ML. Equivalence of Eshelby inclusion theory and Wechsler–Lieberman–Read, Bowles–Mackenzie martensite-crystallography theories. Mater Sci Eng A. 2000;285(1–2):180–185. doi:10.1016/S0921-5093(00)00697-3
  • Ledbetter H, Dunn ML. Habit planes, inclusion theory, and twins. Mater Sci Eng A. 1999;273-275:222–225. doi:10.1016/S0921-5093(99)00375-5
  • Tsukatani I, Hashimoto SI, Inoue T. Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite. ISIJ Int. 1991;31(9):992–1000. doi:10.2355/isijinternational.31.992
  • Moyer JM, Ansell GS. The volume expansion accompanying the martensite transformation in iron-carbon alloys. Metall Trans A. 1975: 1785–1791. doi:10.1007/BF02642308
  • Wechsler M, Lieberman D, Read T. On the theory of the formation of martensite. Trans AIME. 1953;197:1503.
  • Nishiyama Z. Martensitic transformation. Elsevier Academic Press; Cambridge, Massachusetts, 2012.
  • Mura T. Micromechanics of defects in solids. Spring Science Business Media; Nairobi; 2013.
  • Patel JR J, Cohen M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953;1(5):531–538. doi:10.1016/0001-6160(53)90083-2
  • Luo H. Comments on “austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning” by S. Lee, SJ Lee and BC De Cooman. Scr Mater. 2012;66(10):829–831. doi:10.1016/j.scriptamat.2012.01.017
  • Bhadeshia H, Honeycombe R. Steels: microstructure and properties. Butterworth-Heinemann; Oxford; 2017.
  • Dyson DJ, Holmes B. Effect of alloying additions on the lattice parameter of austenite. J Iron Steel Inst. 1970;208:469–474.
  • Han HN, Lee CG, Oh C-S, et al. A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel. Acta Mater. 2004;52(17):5203–5214. doi:10.1016/j.actamat.2004.07.031
  • Van Dijk NH, Butt AM, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005;53(20):5439–5447. doi:10.1016/j.actamat.2005.08.017
  • Dieter GE, Bacon D. Mechanical metallurgy. Vol. 3. New York: McGraw-hill; 1976.
  • Wolfram Research, Inc. Champaign, IL (2022), Mathematica, Version 13.2.
  • Kelly PM, Nutting J. The martensite transformation in carbon steels. Proc R Soc Lond A. 1961;259(1296):45–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.