318
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Plasma nitriding of AISI 2205 steel: effects of surface mechanical attrition treatment and chemical etching

, , , &
Pages 61-68 | Received 25 Sep 2015, Accepted 20 Oct 2015, Published online: 18 Dec 2015

References

  • L. Shen, L. Wang, Y. Wang and C. Wang: ‘Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening’, Surf. Coat. Technol., 2010, 204, 3222–3227. doi: 10.1016/j.surfcoat.2010.03.018
  • A. M. Gatey, S. S. Hosmani and R. P. Singh: ‘Surface mechanical attrition treated AISI 304L steel: role of process parameters’, Surf. Eng., 2015, doi:10.1179/1743294415Y.0000000056.
  • Y. Sun and R. Bailey: ‘Improvement in tribocorrosion behavior of 304 stainless steel by surface mechanical attrition treatment’, Surf. Coat. Technol., 2014, 253, 284–291. doi: 10.1016/j.surfcoat.2014.05.057
  • H. W. Zhang, Z. K. Hei, G. Liu, J. Lu and K. Lu: ‘Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition Treatment’, Acta Mater., 2003, 51, 1871–1881. doi: 10.1016/S1359-6454(02)00594-3
  • G. Sreejith, T. Sunny, J.N. Sahu and C. Sasikumar, ‘Low temperature boronizing of surface nanostructured Ni-Cr-Mo steel using SMAT’, Mater. Sci. Forum, 2015, 830–831, 663–666. doi: 10.4028/www.scientific.net/MSF.830-831.663
  • A. M. Gatey, S. S. Hosmani, R. K. P. Singh and S. Suwas: ‘Surface engineering of stainless steel: Role of surface mechanical attrition treatment (SMAT)’, Adv. Mater. Res., 2013, 794, 238–247. doi: 10.4028/www.scientific.net/AMR.794.238
  • M. Laleh, F. Kargar amd M. Velashjerdi: ‘Low temperature nitriding of nanocrystalline stainless steel and its effect on improving wear and corrosion resistance’, J. Mater. Eng. Perform., 2013, 22, 1304–1310. doi: 10.1007/s11665-012-0417-7
  • F. Cemin, F. G. Echeverrigaray, A. C. Rovini, C. L. G. Amorim, R. L. O. Basso, I. J. R. Baumvol and C. A. Figueroa: ‘Influence of atomic and mechanical attrition on low temperature plasma nitriding of ferrous alloys’, Mater. Sci. Eng. A, 2010, 527, 3206–3209. doi: 10.1016/j.msea.2010.02.012
  • M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel and G. Proust: ‘The effect of surface mechanical attrition treatment on low temperature plasma nitriding of an austenitic stainless steel’, Surf. Coat. Technol., 2013, 221, 191–195. doi: 10.1016/j.surfcoat.2013.01.047
  • G. R. Huang, W. Y. Tsai, J. C. Huang and C. K. Hu: ‘Analytical modelling for ultrasonic surface mechanical attrition treatment’, AIP Adv., 2015, 5, (7), 077126. doi: 10.1063/1.4926811
  • K. Lu and J. Lu: ‘Nanostructured surface layer on the metallic materials induced by surface mechanical attrition treatment’, Mater. Sci. Eng. A, 2004, 375–377, 38–45. doi: 10.1016/j.msea.2003.10.261
  • Z. J. Zheng, Y. Gao, Y. Gui and M. Zhu: ‘Corrosion behavior of nanocrystalline 304 stainless steel prepared by equal channel angular pressing’, Corros. Sci., 2012, 54, 60–67. doi: 10.1016/j.corsci.2011.08.049
  • Y. Fu, X. Wu, E. Han, W. Ke, K. Yang and Z. Jiang: ‘Effect of cold work and sensitization treatment on the corrosion resistance of high nitrogen stainless steel in chloride solution’, Electrochim. Acta, 2009, 54, 1618–1629. doi: 10.1016/j.electacta.2008.09.053
  • S. J. Splinter, R. Rofagha, N. S. Mclntyre and U. Erb: ‘XPS characterization of the corrosion films formed on the nanocrystalline Ni-P alloys in sulphuric acid’, Surf. Interface Anal., 1996, 24, (3), 181–186. doi: 10.1002/(SICI)1096-9918(199603)24:3<181::AID-SIA92>3.0.CO;2-N
  • G. Knöner, K. Reimann, R. Röwer, U. Södervall, and H. E. Schaefer: ‘Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2⋅Y2O3’, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3870–4781. doi: 10.1073/pnas.0730783100
  • S. Bahl, P. Shreyas, M. A. Trishul, S. Suwas and K. Chatterjee: ‘Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification’, Nanoscale, 2015, 7, (17), 7704–7716.
  • C. Donik, A. Kocijan, J. T. Grant, M. Jenko, A. Drenik and B. Pihlar: ‘XPS study of duplex stainless steel oxidized by oxygen atoms’, Corros. Sci., 2009, 51, 827–832. doi: 10.1016/j.corsci.2009.01.021
  • L. Q. Guo, M. C. Lin, L. J. Qiao and A. A. Volinsky: ‘Duplex stainless steel passive film electrical properties studied by in situ current sensing atomic force microscopy’, Corros. Sci., 2014, 78, 55–62. doi: 10.1016/j.corsci.2013.08.031
  • Y. Sun and E. Haruman: ‘Influence of processing conditions on structural characteristics of hybrid plasma surface alloyed austenitic stainless steel’, Surf. Coat. Technol., 2008, 202, 4069–4075. doi: 10.1016/j.surfcoat.2008.02.022
  • C. A. Figueroa and F. ‘Alvarez: ‘Hydrogen etching mechanism in nitrogen implanted iron alloys studied with in situ photoemission electron spectroscopy’, J. Vac. Sci. Technol. A, 2005, 23, (5), L9–L12. doi: 10.1116/1.2013322
  • J. Wang, Y. Lin, J. Yan, D. Zen, Q. Zhang, R. Huang and H. Fan: ‘Influence of time on the microstructure of AISI 321 austenitic stainless steel in salt bath nitriding’, Surf. Coat. Technol., 2012, 206, 3399–3044. doi: 10.1016/j.surfcoat.2012.01.063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.