470
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effect of laser shock peening on aluminium alloy laser-welds

, , , &
Pages 943-948 | Received 08 Dec 2015, Accepted 17 May 2016, Published online: 04 Jul 2016

References

  • J. Z. Lu, K. Y. Luo, Y. K. Zhang, C. Y. Cui, G. F. Sun, J. Z. Zhou, L. Zhang, J. You, K. M. Chen and J. W. Zhong: ‘Grain refinement of LY12 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts’, Acta Mater., 2010, 58, 3984–3994. doi: 10.1016/j.actamat.2010.03.026
  • E. M. Kamal, A. E. Abdel-Wahab and E. E. Mohammed: ‘Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061’, Corros. Sci., 2012, 54, 167–173. doi: 10.1016/j.corsci.2011.09.011
  • D. Maisonnette, M. Suery and D. Nelias: ‘Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy’, Mater. Sci. Eng. A, 2011, 528, 2718–2724. doi: 10.1016/j.msea.2010.12.011
  • Y. W. Park, J. Yu and S. Rhee: ‘A study on the weld characteristics of 5182 aluminum alloy by Nd:YAG laser welding with filler wire for car bodies’, Int. J. Auto. Technol., 2010, 11, 729–736. doi: 10.1007/s12239-010-0086-1
  • A. Mohammad, S. Seyfolah, T. Davood, S-R. Reza and K. Farshad: ‘Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy’, Opt. Laser Technol., 2014, 59, 52–59. doi: 10.1016/j.optlastec.2013.12.009
  • M. J. Cieslak and P. W. Fuerschbach: ‘On the weldablity, composition and hardness of pulsed and continuous Nd:YAG laser welds in aluminum alloys 6061, 5456 and 5086’, Metall. Trans. B, 1988, 19, 319–329. doi: 10.1007/BF02654217
  • M. Pastor, H. Zhao, R. P. Martuhanitz and T. Debroy: ‘Porosity, underfill and magnesium loss during continuous wave Nd:YAG laser welding of thin plates of aluminum alloys 5182 and 5754’, Weld. J., 1999, 78, 207–216.
  • N. Seto, S. Katayama and A. Matsunawa: ‘Porosity formation mechanism and suppression procedure in laser welding of aluminum alloys’, J. Jpn Weld. Soc., 2000, 18, 243–255. doi: 10.2207/qjjws.18.243
  • R. Braun: ‘Nd:YAG laser butt welding of AA6013 using silicon and magnesium containing filler powders’, Mater. Sci. Eng. A, 2006, 426, 250–262. doi: 10.1016/j.msea.2006.04.033
  • M. N. Ahsan, R. Bradley and A. J. Pinkerton: ‘Microcomputed tomography analysis of intralayer porosity generation in laser direct metal deposition and its causes’, J. Laser Appl., 2011, 23, 022009. doi: 10.2351/1.3582311
  • A. W. Prabhu, T. Vincent, A. Chaudhary, W. Zhang and S. S. Babu: ‘Effect of microstructure and defects on fatigue behavior of directed energy deposited Ti-6Al-4V’, Sci. Technol. Weld. Join., 2015, 20, 659–669. doi: 10.1179/1362171815Y.0000000050
  • S. C. Wu, C. Yu, W. H. Zhang, Y. N. Fu and L. Helfen: ‘Porosity induced fatigue damage of laser welded 7075-T6 joints investigated via synchrotron X-ray microtomography’, Sci. Technol. Weld. Join., 2015, 20, 11–19. doi: 10.1179/1362171814Y.0000000249
  • G. F. Sun, R. Zhou, J. Z. Lu and J. Mazumder: ‘Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser deposited AISI 4340 steel’, Acta Mater., 2015, 84, 172–189. doi: 10.1016/j.actamat.2014.09.028
  • X. D. Ren, Q. B. Zhan, H. M. Yang, F. Z. Dai, C. Y. Cui, G. F. Sun and L. Ruan: ‘The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole’, Mater. Design, 2013, 44, 149–154. doi: 10.1016/j.matdes.2012.07.024
  • Y. K. Zhang, J. Z. Lu, X. D. Ren, H. B. Yao and H. X. Yao: ‘Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy’, Mater. Design, 2009, 30, 1697–1703. doi: 10.1016/j.matdes.2008.07.017
  • S. Nursen, G. I. Simge, A. Erhan and D. Arif: ‘Near surface modification of aluminum alloy induced by laser shock processing’, Opt. Laser Technol., 2014, 64, 235–241. doi: 10.1016/j.optlastec.2014.05.028
  • S. Huang, J. Z. Zhou, J. Sheng, J. Z. Lu, G. F. Sun, X. K. Meng, L. D. Zuo and H. Y. Ruan: ‘Effects of laser energy on fatigue crack growth properties of 6061-T6 aluminum alloy subjected to multiple laser peening’, Eng. Fract. Mech., 2013, 99, 87–100. doi: 10.1016/j.engfracmech.2013.01.011
  • L. Zhang, Y. K. Zhang, J. Z. Lu, F. Z. Dai, A. X. Feng, K. Y. Luo, J. S. Zhong, Q. W. Wang, M. Luo and H. Qi: ‘Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion’, Corros. Sci., 2013, 66, 5–13. doi: 10.1016/j.corsci.2012.08.034
  • L. Zhang, J. Z. Lu, Y. K. Zhang, K. Y. Luo, J. W. Zhong, C. Y. Cui, D. J. Kong, H. B. Guan and X. M. Qian: ‘Effects of different shocked paths on fatigue property of 7050-T7451 aluminum alloy during two-sided laser shock processing’, Mater. Design, 2011, 32, 480–486. doi: 10.1016/j.matdes.2010.08.039
  • L. Zhang, K. Y. Luo, J. Z. Lu, Y. K. Zhang, F. Z. Dai and J. W. Zhong: ‘Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint’, Mater. Sci. Eng. A, 2011, 528, 4652–4657. doi: 10.1016/j.msea.2011.02.054
  • H. Toda, S. Masuda, R. Batres, M. Kobyashi, S. Aoyama, M. Onodera, R. Furusawa, K. Uesugi, A. Takeuchi and Y. Suzuki: ‘Statistical assessment of fatigue crack initiation from sub-surface hydrogen micropores in high-quality die-cast aluminum’, Acta Mater., 2011, 59, 4990–4998. doi: 10.1016/j.actamat.2011.04.049
  • C. M. Cheng, C. P. Shan, I. K. Lee and H. Y. Lin: ‘Hot cracking of welds on heat treatable aluminum alloys’, Sci. Technol. Weld. Join., 2005, 10, 344–352. doi: 10.1179/174329305X40688
  • S. G. Irizalp, N. Saklakoglu and B. S. Yilbas: ‘Characrerization of microplastic deformation produced in 6061-T6 by using laser shock processing’, Int. J. Adv. Manuf. Technol., 2014, 71, 109–115. doi: 10.1007/s00170-013-5481-0
  • X. D. Ren, L. Ruan, S. Q. Yuan, N. F. Ren, L. M. Zheng, Q. B. Zhan, J. Z. Zhou, H. M. Yang, Y. Wang and F.Z. Dai: ‘Dislocation polymorphism transformation of 6061-T651 aluminum alloy processed by laser shock processing: Effect of tempering at the elevated temperatures’, Mater. Sci. Eng. A, 2013, 578, 96–102. doi: 10.1016/j.msea.2013.04.034
  • A. Elmesalamy, J. A. Francis and L. Li: ‘A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel’, Int. J. Pres. Ves. Pip., 2014, 113, 49–59. doi: 10.1016/j.ijpvp.2013.11.002
  • J. A. Francis, H. K. D. H. Bhadeshia and P. J. Withers: ‘Welding residual stresses in ferritic power plant steels’, Mater. Sci. Technol., 2007, 23, 1009–1020. doi: 10.1179/174328407X213116
  • J. Z. Zhou, S. Huang, J. Sheng, J. Z. Lu, C. D. Wang, K. M. Chen, H. Y. Ruan and H. S. Chen: ‘Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening’, Mater. Sci. Eng. A, 2012, 539, 360–368. doi: 10.1016/j.msea.2012.01.125
  • H. Baker: ASM Handbook: Alloy Phase Diagrams, 3, ASM International, 1998, 2.48.
  • S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi and T. Yamada: ‘The role of cold work and applied stress on surface oxidation of 304 stainless steel’, Corros. Sci., 2012, 56, 78–85. doi: 10.1016/j.corsci.2011.11.021
  • R. Jiang, S. Everitt, M. Lewandowski, N. Gao and P. A. S. Reed: ‘Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes’, Int. J. Fatigue, 2014, 62, 217–227. doi: 10.1016/j.ijfatigue.2013.07.014
  • Y. H. Gu, C. F. Chen, S. Bandopadhyay, C. Y. Ning and Y. J. Guo: ‘Residual stress in pulsed dc microarc oxidation treated AZ31 alloy’, Surf. Eng., 2012, 28, 498–502. doi: 10.1179/1743294412Y.0000000002
  • G. Ivetic: ‘Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets’, Surf. Eng., 2011, 27, 445–453. doi: 10.1179/026708409X12490360425846
  • A. F. Nowakowski, A. Ballil and F. C. G. A. Nicolleau. ‘Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation’, Phys. Rev. E, 2015, 92, 023028. doi: 10.1103/PhysRevE.92.023028
  • H. Toda, K. Minami, K. Koyama, K. Ichitani, M. Kobayashi, K. Uesugi and Y. Suzuki: ‘Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation’, Acta Mater., 2009, 57, 4391–4403. doi: 10.1016/j.actamat.2009.06.012
  • A. Wang, P. F. Thomson and P. D. Hodgson: ‘A study of pore and welding in hot rolling process’, J. Mater. Process. Technol., 1996, 60, 95–102. doi: 10.1016/0924-0136(96)02313-8
  • A. Chaijaruwanich, R. J. Dashwood, P. D. Lee and H. Nagaumi: ‘Pore evolution in a direct chill cast Al-6 wt% Mg alloy during hot rolling’, Acta Mater., 2006, 54, 5185–5194. doi: 10.1016/j.actamat.2006.06.029
  • D. E. J. Talbot: ‘Effects of hydrogen in aluminum, magnesium, copper and their Alloys’, Int. Metall. Rev., 1975, 20, 166–184.
  • H. Toda, T. Hidaka, T. Kobayashi, K. Uesugi, A. Takeuchi and K. Horikawa: ‘Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure’, Acta Mater., 2009, 57, 2277–2290. doi: 10.1016/j.actamat.2009.01.026
  • M. F. Gong, S. R. Qiao and F. Mei: ‘Determining Young’s modulus and Poisson’s ratio of thin hard films’, Surf. Eng., 2014, 30, 589–593. doi: 10.1179/1743294414Y.0000000288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.