147
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Shot peening in a novel centrifugal air blast reactor

&
Pages 667-678 | Received 08 Nov 2015, Accepted 09 Jun 2016, Published online: 21 Jul 2016

References

  • Roland T, Retraint D, Lu K, Lu J. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater Sci Eng A. 2007;A445–446:281–288. doi: 10.1016/j.msea.2006.09.041
  • Chui P, Sun K, Sun C, Yang X, Shan T. Effect of surface nanocrystallization induced by fast multiple rotation rolling on hardness and corrosion behavior of 316L stainless steel. App Surf Sci. 2011;257:6787–6791. doi: 10.1016/j.apsusc.2011.02.127
  • Roland T, Ya M, Retraint D, Lu K, Lu J. A new multilayered nanostructured composite material produced by assembling SMA-treated thin plates. J Mat Sci Tech. 2004;20(1):55–58.
  • Unal O, Varol R. Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening. Appl Surf Sci. 2014;290:40–47. doi: 10.1016/j.apsusc.2013.10.184
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038
  • Hassani-Gangaraj SM, Moridi A, Guagliano M, Ghidini A, Boniardi M. The effect of nitriding, severe shot peening and their combination on the fatigue behavior and micro-structure of a low-alloy steel. Int J Fatigue. 2014;62:67–76. doi: 10.1016/j.ijfatigue.2013.04.017
  • Hassani-Gangaraj SM, Moridi A, Guagliano M, Ghidini A. Nitriding duration reduction without sacrificing mechanical characteristics and fatigue behavior: The beneficial effect of surface nano-crystallization by prior severe shot peening. Mater Des. 2014;55:492–498. doi: 10.1016/j.matdes.2013.10.015
  • Fu P, Zhan K, Jiang C. Micro-structure and surface layer properties of18CrNiMo7–6 steel after multistep shot peening. Mater Des. 2013;51:309–314. doi: 10.1016/j.matdes.2013.04.011
  • Unal O, Varol R. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and re-peening. Appl Surf Sci. 2015;351:289–295. doi: 10.1016/j.apsusc.2015.05.093
  • Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mat Sci Eng. 2004;A375–377:38–45. doi: 10.1016/j.msea.2003.10.261
  • Tao NR, Lu J, Lu K. Surface nanocrystallization by surface mechanical attrition treatment. Mater Sci Forum. 2008;579:91–108. doi: 10.4028/www.scientific.net/MSF.579.91
  • Maire L, Faure L, Philippon S, Novelli M, Marcos G, Czerwiec T, Grosdidier T. Influence of duplex USSP/Nitriding surface treatments on the dry sliding behavior of Ti6Al4 V/AISI 316L tribopairs. Proc Eng. 2015;114:621–626. doi: 10.1016/j.proeng.2015.08.113
  • Cho KT, Song K, Oh SH, Lee Y, Lee WB. Enhanced surface hardening of AISI D2 steel by atomic attrition during ion nitriding. Surf Coat Technol. 2014;251:115–121. doi: 10.1016/j.surfcoat.2014.04.011
  • Tao N, Zhang H, Lu J, Lu K. Development of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment (SMAT). Mater Trans. 2003;44(10):1919–1925. doi: 10.2320/matertrans.44.1919
  • Zhang HW, Hei ZK, Liu G, Lu J, Lu K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia. 2003;51:1871–1881. doi: 10.1016/S1359-6454(02)00594-3
  • Chemkhi M, Retraint D, Roos A, Garnier C, Waltz L, Demangel C, Proust G. The effect of surface mechanical attrition treatment on low temperature plasma nitriding of an austenitic stainless steel. Surf Coat Technol. 2013;221:191–195. doi: 10.1016/j.surfcoat.2013.01.047
  • Franchim AS, de Campos VS, Travessa DN, de Moura Neto C. Analytical modeling for residual stresses produced by shot peening. Mater Des. 2009;30:1556–60. doi: 10.1016/j.matdes.2008.07.040
  • Zhan K, Jiang CH, Ji V. Effect of prestress state on surface layer characteristic of S30432 austenitic stainless steel in shot peening process. Mater Des. 2012;42:89–93. doi: 10.1016/j.matdes.2012.05.053
  • Caglioti G, Paoletti A, Ricci FP. Choice of collimators for crystal spectrometers for neutron diffraction. Nucl Instrum. 1958;3:223–228. doi: 10.1016/0369-643X(58)90029-X
  • Rama Rao P, Anantharaman TR. Impact of thermal and mechanical treatment on faulting in hexagonal cobalt. Z Metallk. 1963;54, 658.
  • Sharp JV, Makin MJ, Christian JW. Dislocation structure in deformed single crystals of magnesium. Phys Status Solidi. 1965;11:845–864. doi: 10.1002/pssb.19650110235
  • Kapoor K, Lahiri D, Rao SV. R, Sanyal T, Kashyap BP. X-ray diffraction line profile analysis for defect study in Zr–2×5% Nb material. Bull Mater Sci. 2004;27:59–67. doi: 10.1007/BF02708487
  • Wu XX, San XY, Liang XG, Gong YL, Zhu XK. Effect of stacking fault energy on mechanical behavior of cold-forging Cu and Cu alloys. Mater Des. 2013;47:372–376. doi: 10.1016/j.matdes.2012.12.006
  • Raja KS, Namjoshi SA, Misra M. Improved corrosion resistance of Ni-22Cr-13Mo-4W alloy by surface nanocrystallization. Mater Lett. 2005;59, 570.
  • Wang T, Yu J, Dong B. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surf Coat Technol. 2006;200:4777–4781. doi: 10.1016/j.surfcoat.2005.04.046
  • Balusamy T, Sankara Narayanan TSN, Ravichandran K, Park IS, Lee MH. Plasma nitriding of AISI 304 stainless steel: role of surface mechanical attrition treatment. Mater Charact. 2013;85:38–47. doi: 10.1016/j.matchar.2013.08.009
  • Chan HL, Ruan HH, Chen AY, Lu J. Optimization of the strain rate to achieve exceptional mechanical properties of 304 stainless steel using high speed ultrasonic surface mechanical attrition treatment. Acta Materialia. 2010;58:5086–5096. doi: 10.1016/j.actamat.2010.05.044
  • Hecker SS, Stout MG, Staudhammer KP. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. magnetic measurements and mechanical behavior. Metall Trans A. 1982;13:619–626. doi: 10.1007/BF02644427
  • Umemoto M. Nanocrystallization of steel by severe plastic deformation. Mater Trans. 2003;44(10):1900–1911. doi: 10.2320/matertrans.44.1900
  • Huang G, Tsai WY, Huang JC, Hu1 C-K. Analytical modelling for ultrasonic surface mechanical attrition treatment. Aip Adv. 2015;5, doi:10.1063/1.4926811
  • Staudhammer KP, Murr LE. The effect of prior deformation on the residual microstructure of explosively deformed stainless steels. Mater Sci Eng. 1980;44(1):97–113. doi: 10.1016/0025-5416(80)90235-9
  • Murr LE, Staudhammer KP, Hecker SS. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II microstructural study. Metall Trans A. 1982;13(4):627–635. doi: 10.1007/BF02644428
  • Kim S, Ahn J, Kim SD, Lee D. Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle. Int J Heat Mass Transfer. 2003;46:399. doi: 10.1016/S0017-9310(02)00296-X
  • Prakash NA, Gnanamoorthy R, Kamaraj M. Surface nanocrystallization of aluminium alloy by controlled ball impact technique. Surf Coat Tech. 2012;210:78–89. doi: 10.1016/j.surfcoat.2012.08.069
  • Tabor D: Hardness of metals. 1951, Oxford, UK, Clarendon Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.