249
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic efficacy of ZnO films – light intensity and thickness effects

, , &
Pages 512-520 | Received 17 Oct 2016, Accepted 05 Dec 2016, Published online: 30 Jan 2017

References

  • Chabri S, Dhara A, Show B, et al. Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing. Catal Sci Technol. 2016;6:3238–3252. doi: 10.1039/C5CY01573A
  • Huang J, Liu D, Lu J, et al. Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids Surf A: Physchem Eng Aspects. 2016;492:242–248. doi: 10.1016/j.colsurfa.2015.11.071
  • Rosero MJP, Adebayo MA, Lima EC, et al. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids Surf A: Physchem Eng Aspects. 2016;504:105–115. doi: 10.1016/j.colsurfa.2016.05.059
  • Wang X, Wang X, Xiao P, et al. High water permeable free-standing cellulose triacetate/graphene oxide membrane with enhanced antibiofouling and mechanical properties for forward osmosis. Colloids Surf A: Physchem Eng Aspects. 2016;508:327–335. doi: 10.1016/j.colsurfa.2016.08.077
  • Kim YS, Shin KR, Kim GW, et al. Photocatalytic activity of TiO2 film containing Fe2 O3 via plasma electrolytic oxidation. Surf Eng. 2016;32:443–447. doi: 10.1179/1743294415Y.0000000077
  • Bramhaiah K, Singh VN, John NS. Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles: enhanced photodegradation rates in relation to their composition and morphology. Phys Chem Chem Phys. 2016;18(3):1478–1486. doi: 10.1039/C5CP05081B
  • Cai R, Wu JG, Sun L, et al. 3D graphene/ZnO composite with enhanced photocatalytic activity. Mater Des. 2016;90:839–844. doi: 10.1016/j.matdes.2015.11.020
  • Momeni MM, Ghayeb Y, Davarzadeh M. WO3 nanoparticles anchored on Titania nanotube films as efficient photoanodes. Surf Eng. 2015;31:259–264. doi: 10.1179/1743294414Y.0000000450
  • Liu YJ, Cai R. Fang T, et al. Low temperature synthesis of Bi2WO6 and its photocatalytic activities. Mater Res Bull. 2015;66:96–100. doi: 10.1016/j.materresbull.2015.02.032
  • Todorova N, Giannakopoulou T, Pomoni K, et al. Photocatalytic NOx oxidation over modified ZnO/TiO2 thin films. Catal Today. 2015;252:41–46. doi: 10.1016/j.cattod.2014.11.008
  • Kadi MW, McKinney D, Mohammed RM, et al. Fluorine doped zinc oxide nanowires: enhanced photocatalysts degrade malachite green dye under visible light conditions. Ceram Int. 2016;42(4):4672–4678. doi: 10.1016/j.ceramint.2015.11.052
  • Pawar RC, Kim H, Lee CS. Defect-controlled growth of ZnO nanostructures using its different zinc precursors and their application for effective photodegradation. Curr Appl Phys. 2014;14:621–629. doi: 10.1016/j.cap.2014.02.003
  • Rodrigues MS, Borges J, Gabor C, et al. Functional behaviour of TiO2 films doped with noble metals. Surf Eng. 2016;32:554–561. doi: 10.1179/1743294415Y.0000000085
  • Kumar R, Rana D, Umar A, et al. Ag-doped ZnO nanoellipsoids: potential scaffold for photocatalytic and sensing applications. Talanta. 2015;137:204–213. doi: 10.1016/j.talanta.2015.01.039
  • Yang TH, Harn YW, Huang LD, et al. Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy. J. Catal. 2015;329:167–176. doi: 10.1016/j.jcat.2015.05.009
  • Worajittiphon P, Pingmuanga K, Inceesungvorna B, et al. Enhancing the photocatalytic activity of ZnO nanoparticles for efficient rhodamine B degradation by functionalised graphene nanoplatelets. Ceramics Int. 2015;41:1885–1889. doi: 10.1016/j.ceramint.2014.09.023
  • Ravichandran K, Nithiyadevi K, Sakthivel B, et al. Synthesis of ZnO:Co/rGO nanocomposites for enhanced photocatalytic and antibacterial activities. Ceramics Int. 2016;42:17539–17550. doi: 10.1016/j.ceramint.2016.08.067
  • Ravichandran K, Uma R, Sakthivel B, et al. Influence of Co+F doping on the physical and antibacterial properties of ZnO nanopowders prepared by a simple soft chemical method. J Mater Sci: Mater Electron. 2016;27:1609–1615.
  • Sriram S, Thayumanavan A, Ravichandran K. Influence of nitrogen doping on properties of NiO films. Surf Eng. 2016;32(3):207–211. doi: 10.1179/1743294414Y.0000000380
  • Ravichandran K, Snega S, Begum NJ, et al. Enhancement in the antibacterial efficiency of ZnO nanopowders by tuning the shape of the nanograins through fluorine doping. Superlat Microstruct. 2014;69:17–28. doi: 10.1016/j.spmi.2014.01.020
  • Mohan R, Ravichandran K, Nithya A, et al. Influence of spray flux density on the photocatalytic activity and certain physical properties of ZnO thin films. J Mater Sci: Mater Electron. 2014;25:2546–2553.
  • Ng ZN, Chan KY, Tohsophon T. Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique. Appl Surf Sci. 2012;258:9604–9609. doi: 10.1016/j.apsusc.2012.05.156
  • Zhang X, Dong S, Zhou X, et al. A facile one-pot synthesis of Er–Al co-doped ZnO nanoparticles with enhanced photocatalytic performance under visible light. Mater Lett. 2015;143:312–314. doi: 10.1016/j.matlet.2014.12.094
  • Deng Y-J, Lu Y, Liu J-K, et al. Mass production and photoelectric performances of P and Al Co-doped ZnO nanocrystals under different cooling post-processes. J Alloys Compd. 2015;648:438–444. doi: 10.1016/j.jallcom.2015.07.031
  • Hosseini SM, Abdolhosseini Sarsari I, Kameli P, et al. Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J Alloys Compd. 2015;640:408–415. doi: 10.1016/j.jallcom.2015.03.136
  • Wang Y, Fang HB, Zheng YZ, et al. Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity. Nanoscale. 2015;7:19118–19128. doi: 10.1039/C5NR06359K
  • Ameen S, Akhtar MS, Seo H-K, et al. Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chem Eng J. 2012;187:351–356. doi: 10.1016/j.cej.2012.01.097
  • Yin Q, Qiao R, Li Z, et al. Hierarchical nanostructures of nickel-doped zinc oxide: morphology controlled synthesis and enhanced visible-light photocatalytic activity. J Alloys Compd. 2015;618:318–325. doi: 10.1016/j.jallcom.2014.08.087
  • Bhuyan T, Khanuja M, Sharma R, et al. A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J Nanopart Res. 2015;17:288. doi: 10.1007/s11051-015-3093-3
  • Ahmad M, Ahmed E, Zafar F, et al. Enhanced photocatalytic activity of Ce-doped ZnO nanopowders synthesized by combustion method. J Rare Earths. 2015;33:255–262. doi: 10.1016/S1002-0721(14)60412-9
  • Bechambi O, Chalbi M, Najjar W, et al. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl Surf Sci. 2015;347:414–420. doi: 10.1016/j.apsusc.2015.03.049
  • Divband B, Khatamian M, Kazemi Eslamian GR, et al. Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Appl Surf Sci. 2013;284:80–86. doi: 10.1016/j.apsusc.2013.07.015
  • Ren C, Yang B, Wu M, et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J Hazard Mater. 2010;182:123–129. doi: 10.1016/j.jhazmat.2010.05.141
  • Meng A, Li X, Wang X, et al. Preparation, photocatalytic properties and mechanism of Fe or N-doped Ag/ZnO nanocomposites. Ceram Int. 2014;40:9303–9309. doi: 10.1016/j.ceramint.2014.01.153
  • Chen J, Cen J, Xu X, et al. The application of heterogeneous visible light photocatalysts in organic synthesis. Catal Sci Technol. 2016;6:349–362. doi: 10.1039/C5CY01289A
  • Aslam M, Qamar MT, Tahir Soomro M, et al. The effect of sunlight induced surface defects on the photocatalytic activity of nanosized CeO2 for the degradation of phenol and its derivatives. Appl Catal B: Environ. 2016;180:391–402. doi: 10.1016/j.apcatb.2015.06.050
  • Nipane SV, Korake PV, Gokavi GS. Graphene-zinc oxide nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation. Ceram Int. 2015;41:4549–4557. doi: 10.1016/j.ceramint.2014.11.151
  • Joshi BN, Yoon H, Na S-H, et al. Enhanced photocatalytic performance of graphene–ZnO nanoplatelet composite thin films prepared by electrostatic spray deposition. Ceram Int. 2014;40:3647–3654. doi: 10.1016/j.ceramint.2013.09.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.