1,019
Views
68
CrossRef citations to date
0
Altmetric
Original Articles

Research status of magnesium alloys by micro-arc oxidation: a review

, , &
Pages 731-738 | Received 17 Apr 2016, Accepted 29 Dec 2016, Published online: 30 Jan 2017

References

  • Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg. 2003;12:35–39. doi: 10.1067/mse.2003.22
  • Saris NE, Mervaala E, Karppanen H, et al. Magnesium. Clin Chim Acta. 2000;294:1–26. doi: 10.1016/S0009-8981(99)00258-2
  • Mordike BL, Ebert T. Magnesium: properties-applications-potential. Mater Sci Eng A. 2001;302:37–45. doi: 10.1016/S0921-5093(00)01351-4
  • Gray JE, Luan B. Protective coatings on magnesium and its alloys – a critical review. J Alloys Compd. 2002;336:88–113. doi: 10.1016/S0925-8388(01)01899-0
  • Song G. Control of biodegradation of biocompatible magnesium alloys. Corros Sci. 2007;49:1696–1701. doi: 10.1016/j.corsci.2007.01.001
  • Alvarez-Lopez M, Pereda MD, Del Valle JA, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 2010;6:1763–1771. doi: 10.1016/j.actbio.2009.04.041
  • Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros Sci. 2010;52:589–594. doi: 10.1016/j.corsci.2009.10.018
  • Ambat R, Aung NN, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corros Sci. 2000;42:1433–1455. doi: 10.1016/S0010-938X(99)00143-2
  • Wang Y, Wang X, Zhang T, et al. Role of β Phase during microarc oxidation of Mg Alloy AZ91D and corrosion resistance of the oxidation coating. J Mater Sci Technol. 2013;29:1129–1133. doi: 10.1016/j.jmst.2013.10.014
  • Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–3563. doi: 10.1016/j.biomaterials.2004.09.049
  • Witte F, Fischer J, Nellesen J, et al. In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater. 2010;6:1792–1799. doi: 10.1016/j.actbio.2009.10.012
  • Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv. 2005;66:590–594. doi: 10.1002/ccd.20520
  • Zhang W, Li M, Chen Q, et al. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications. Mater Des. 2012;39:379–383. doi: 10.1016/j.matdes.2012.03.006
  • Baril G, Blanc C, Pébere N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures. J Electrochem Soc. 2001;148:B489. doi: 10.1149/1.1415722
  • Verstraeten SV, Aimo L, Oteiza PI. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol. 2008;82:789–802. doi: 10.1007/s00204-008-0345-3
  • Li Y, Wen C, Mushahary D, et al. Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater. 2012;8:3177–3188. doi: 10.1016/j.actbio.2012.04.028
  • Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–1734. doi: 10.1016/j.biomaterials.2005.10.003
  • Hantzsche K, Bohlen J, Wendt J, et al. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr Mater. 2010;63:725–730. doi: 10.1016/j.scriptamat.2009.12.033
  • Zhang Y, Yan C, Wang F, et al. Study on the environmentally friendly anodizing of AZ91D magnesium alloy. Surf Coat Technol. 2002;161:36–43. doi: 10.1016/S0257-8972(02)00342-0
  • Lamaka SV, Knörnschild G, Snihirova DV, et al. Complex anticorrosion coating for ZK30 magnesium alloy. Electrochim Acta. 2009;55:131–141. doi: 10.1016/j.electacta.2009.08.018
  • Zhang S, Li Q, Fan J, et al. Novel composite films prepared by sol–gel technology for the corrosion protection of AZ91D magnesium alloy. Prog Org Coat. 2009;66:328–335. doi: 10.1016/j.porgcoat.2009.08.011
  • Zhao Q, Guo X, Dang X, et al. Preparation and properties of composite MAO/ECD coatings on magnesium alloy. Colloid Surf B Biointerfs. 2013;102:321–326. doi: 10.1016/j.colsurfb.2012.07.040
  • Voevodin AA, Yerokhin AL, Lyubimov VV, et al. Characterization of wear protective Al Si O coatings formed on Al-based alloys by micro-arc discharge treatment. Surf Coat Technol. 1996;86–87:516–521. doi: 10.1016/S0257-8972(96)03069-1
  • Veys-Renaux D, Barchiche CE, Rocca E. Corrosion behavior of AZ91 Mg alloy anodized by low-energy micro-arc oxidation: effect of aluminates and silicates. Surf Coat Technol. 2014;251:232–238. doi: 10.1016/j.surfcoat.2014.04.031
  • Al Bosta MMS, Ma K. Suggested mechanism for the MAO ceramic coating on aluminium substrates using bipolar current mode in the alkaline silicate electrolytes. Appl Surf Sci. 2014;308:121–138. doi: 10.1016/j.apsusc.2014.04.120
  • Dou Q, Li W, Zhang G, et al. Preparation and characterisation of black ceramic coating on AZ91D magnesium alloy by plasma electrolytic oxidation with reduced energy consumption. Mater Res Innovations. 2015;19:S2-23–S2-27. doi: 10.1179/1432891715Z.0000000001309
  • Nie X, Leyland A, Song HW, et al. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surf Coat Technol. 1999;116-119:1055–1060. doi: 10.1016/S0257-8972(99)00089-4
  • Arrabal R, Matykina E, Skeldon P, et al. Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite. Appl Surf Sci. 2009;255:5071–5078. doi: 10.1016/j.apsusc.2008.12.070
  • Cai J, Cao F, Chang L, et al. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film. Appl Surf Sci. 2011;257:3804–3811. doi: 10.1016/j.apsusc.2010.11.153
  • Hussein RO, Zhang P, Nie X, et al. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62. Surf Coat Technol. 2011;206:1990–1997. doi: 10.1016/j.surfcoat.2011.08.060
  • Curran JA, Clyne TW. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium. Surf Coat Technol. 2005;199:177–183. doi: 10.1016/j.surfcoat.2004.11.045
  • Tang H, Sun Q, Xin T, et al. Influence of Co(CH3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation. Curr Appl Phys. 2012;12:284–290. doi: 10.1016/j.cap.2011.06.023
  • Zhang RF, Shan DY, Chen RS, et al. Effects of electric parameters on properties of anodic coatings formed on magnesium alloys. Mater Chem Phys. 2008;107:356–363. doi: 10.1016/j.matchemphys.2007.07.027
  • Wei D, Zhou Y, Jia D, et al. Effect of applied voltage on the structure of microarc oxidized TiO2-based bioceramic films. Mater Chem Phys. 2007;104:177–182. doi: 10.1016/j.matchemphys.2007.03.007
  • Lin X, Tan L, Zhang Q, et al. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating. Acta Biomater. 2013;9:8631–8642. doi: 10.1016/j.actbio.2012.12.016
  • Liang J, Hu L, Hao J. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Appl Surf Sci. 2007;253:6939–6945. doi: 10.1016/j.apsusc.2007.02.010
  • Sun X, Jiang Z, Yao Z, et al. The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. Appl Surf Sci. 2005;252:441–447. doi: 10.1016/j.apsusc.2005.01.023
  • Bayati MR, Moshfegh AZ, Golestani-Fard F. Effect of electrical parameters on morphology, chemical composition, and photoactivity of the nano-porous titania layers synthesized by pulse-microarc oxidation. Electrochim Acta. 2010;55:2760–2766. doi: 10.1016/j.electacta.2009.12.043
  • Lv G, Chen H, Gu W, et al. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology. J Mater Process Technol. 2008;208:9–13. doi: 10.1016/j.jmatprotec.2007.12.125
  • Tang Y, Zhao X, Jiang K, et al. The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment. Surf Coat Technol. 2010;205:1789–1792. doi: 10.1016/j.surfcoat.2010.05.016
  • Wang YM, Jia DC, Guo LX, et al. Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy. Mater Chem Phys. 2005;90:128–133. doi: 10.1016/j.matchemphys.2004.10.025
  • Cui XJ, Lin XZ, Liu CH, et al. Microstructure and properties of MAO coatings for AZ91D magnesium alloy in varies work mode. Trans Tech Publ. 2013;747:178–183.
  • Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEO coatings on magnesium alloys. Surf Coat Technol. 2009;203:2207–2220. doi: 10.1016/j.surfcoat.2009.02.011
  • Hussein RO, Northwood DO, Nie X. The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. J Alloys Compd. 2012;541:41–48. doi: 10.1016/j.jallcom.2012.07.003
  • Butyagin PI, Khokhryakov YV, Mamaev AI. Microplasma systems for creating coatings on aluminium alloys. Mater Lett. 2003;57:1748–1751. doi: 10.1016/S0167-577X(02)01062-5
  • Da Forno A, Bestetti M. Effect of the electrolytic solution composition on the performance of micro-arc anodic oxidation films formed on AM60B magnesium alloy. Surf Coat Technol. 2010;205:1783–1788. doi: 10.1016/j.surfcoat.2010.05.043
  • Liang J, Guo B, Tian J, et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Appl Surf Sci. 2005;252:345–351. doi: 10.1016/j.apsusc.2005.01.007
  • Gupta P, Tenhundfeld G, Daigle EO, et al. Electrolytic plasma technology: science and engineering – an overview. Surf Coat Technol. 2007;201:8746–8760. doi: 10.1016/j.surfcoat.2006.11.023
  • Rama Krishna L, Poshal G, Sundararajan G. Influence of electrolyte chemistry on morphology and corrosion resistance of micro arc oxidation coatings deposited on magnesium. Metall Mater Trans A. 2010;41:3499–3508. doi: 10.1007/s11661-010-0412-2
  • Kazek-Kęsik A, et al. Surface characterisation of Ti–15Mo alloy modified by a PEO process in various suspensions. Mater Sci Eng C. 2014;39:259–272. doi: 10.1016/j.msec.2014.03.008
  • Seyfoori A, Mirdamadi S, Khavandi A, et al. Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes. Appl Surf Sci. 2012;261:92–100. doi: 10.1016/j.apsusc.2012.07.105
  • Pan YK, Chen CZ, Wang DG, et al. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg–Zn–Zr magnesium alloy. Colloids Surf B Biointerfaces. 2013;109:1–9. doi: 10.1016/j.colsurfb.2013.03.026
  • Durdu S, Aytaç A, Usta M. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation. J Alloys Compd. 2011;509:8601–8606. doi: 10.1016/j.jallcom.2011.06.059
  • Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – a review. Acta Biomater. 2014;10:557–579. doi: 10.1016/j.actbio.2013.10.036
  • Gnedenkov SV, Sinebryukhov SL, Zavidnaya AG, et al. Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route. J Taiwan Inst Chem Eng. 2014;45:3104–3109. doi: 10.1016/j.jtice.2014.03.022
  • Gnedenkov SV, Sinebryukhov SL, Khrisanfova OA, et al. Formation of bioactive anticorrosion coatings on resorbable implants by plasma electrolytic oxidation. Prot Met Phys Chem Surf. 2013;49:874–879. doi: 10.1134/S2070205113070071
  • O Brien FJ, Harley BA, Yannas IV, et al. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–441. doi: 10.1016/j.biomaterials.2004.02.052
  • van Tienen TG, Heijkants RG, Buma P, et al. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials. 2002;23:1731–1738. doi: 10.1016/S0142-9612(01)00280-0
  • Luo H, Cai Q, Wei B, et al. Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy. J Alloys Compd. 2008;464:537–543. doi: 10.1016/j.jallcom.2007.10.072
  • Wen Q, Cao FH, Shi YY, et al. The effect of phosphate on MAO of AZ91D magnesium using AC power source. Mater Corros. 2008;59:819–824. doi: 10.1002/maco.200804169
  • Goodman SB, Yao Z, Keeney M, et al. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34:3174–3183. doi: 10.1016/j.biomaterials.2013.01.074
  • Benini O, D Alessandro C, Gianfaldoni D, et al. Extra-phosphate load from food additives in commonly eaten foods: a real and insidious danger for renal patients. J Ren Nutr. 2011;21:303–308. doi: 10.1053/j.jrn.2010.06.021
  • Liang J, Hu L, Hao J. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Appl Surf Sci. 2007;253:4490–4496. doi: 10.1016/j.apsusc.2006.09.064
  • Mori Y, Koshi A, Liao J, et al. Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate – silicate mixture electrolytes. Corros Sci. 2014;88:254–262. doi: 10.1016/j.corsci.2014.07.038
  • Yagi S, Kuwabara K, Fukuta Y, et al. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation. Corros Sci. 2013;73:188–195. doi: 10.1016/j.corsci.2013.03.035
  • Murakami K, Hino M, Nakai K, et al. Mechanism of corrosion protection of anodized magnesium alloys. Mater Trans. 2008;49:1057–1064. doi: 10.2320/matertrans.MC200718
  • Tan L, Wang Q, Lin X, et al. Loss of mechanical properties in vivo and bone–implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomater. 2014;10:2333–2340. doi: 10.1016/j.actbio.2013.12.020
  • Chen H, Lv G, Zhang G, et al. Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives. Surf Coat Technol. 2010;205:S32–S35. doi: 10.1016/j.surfcoat.2010.03.032
  • Wang HM, Chen ZH, Cheng YL. Optimisation of anodising electrolyte for magnesium alloy AZ31 and characteristics of anodic film. Surf Eng. 2010;26:334–339. doi: 10.1179/026708409X363219
  • Sreekanth D, Rameshbabu N, Venkateswarlu K. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceram Int. 2012;38:4607–4615. doi: 10.1016/j.ceramint.2012.02.040
  • Sreekanth D, Rameshbabu N, Venkateswarlu K, et al. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy. Surf Coat Technol. 2013;222:31–37. doi: 10.1016/j.surfcoat.2013.01.056
  • Shi L, Xu Y, Li K, et al. Effect of additives on structure and corrosion resistance of ceramic coatings on Mg–Li alloy by micro-arc oxidation. Curr Appl Phys. 2010;10:719–723. doi: 10.1016/j.cap.2009.10.011
  • Němcová A, Skeldon P, Thompson GE, et al. Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy. Surf Coat Technol. 2013;232:827–838. doi: 10.1016/j.surfcoat.2013.06.107
  • Wu D, Liu X, Lu K, et al. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface. Appl Surf Sci. 2009;255:7115–7120. doi: 10.1016/j.apsusc.2009.02.087
  • Zhang RF, Zhang SF, Yang N, et al. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys. J Alloys Compd. 2012;539:249–255. doi: 10.1016/j.jallcom.2012.04.120
  • Guo H, An M. Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation. Thin Solid Films. 2006;500:186–189. doi: 10.1016/j.tsf.2005.11.045
  • Laleh M, Rouhaghdam AS, Shahrabi T, et al. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J Alloys Compd. 2010;496:548–552. doi: 10.1016/j.jallcom.2010.02.098
  • Tang M, Liu H, Li W, et al. Effect of zirconia sol in electrolyte on the characteristics of microarc oxidation coating on AZ91D magnesium. Mater Lett. 2011;65:413–415. doi: 10.1016/j.matlet.2010.09.041
  • Liu J, Lu Y, Jing X, et al. Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline silicate electrolyte containing silica sol. Mater Corros. 2009;60:865–870. doi: 10.1002/maco.200805204
  • Arrabal R, Matykina E, Skeldon P, et al. Incorporation of zirconia particles into coatings formed on magnesium by plasma electrolytic oxidation. J Mater Sci. 2008;43:1532–1538. doi: 10.1007/s10853-007-2360-9
  • Lim TS, Ryu HS, Hong S. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corros Sci. 2012;62:104–111. doi: 10.1016/j.corsci.2012.04.043
  • Blawert C, Sah SP, Liang J, et al. Role of sintering and clay particle additions on coating formation during PEO processing of AM50 magnesium alloy. Surf Coat Technol. 2012;213:48–58. doi: 10.1016/j.surfcoat.2012.10.013
  • Snizhko LO, Yerokhin AL, Pilkington A, et al. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim Acta. 2004;49:2085–2095. doi: 10.1016/j.electacta.2003.11.027
  • Monfort F, Berkani A, Matykina E, et al. A tracer study of oxide growth during spark anodizing of aluminum. J Electrochem Soc. 2005;152:C382. doi: 10.1149/1.1905968
  • Matykina E, Berkani A, Skeldon P, et al. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium. Electrochim Acta. 2007;53:1987–1994. doi: 10.1016/j.electacta.2007.08.074
  • Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corros Sci. 2007;49:672–693. doi: 10.1016/j.corsci.2006.05.046
  • Yerokhin AL, Leyland A, Matthews A. Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation. Appl Surf Sci. 2002;200:172–184. doi: 10.1016/S0169-4332(02)00848-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.