238
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Borate’s effects on coatings by PEO on AZ91D alloy

, , , & ORCID Icon
Pages 773-778 | Received 26 Oct 2016, Accepted 17 Jan 2017, Published online: 16 Feb 2017

References

  • Sin SL, Elsayed A, Ravindran C. Inclusions in magnesium and its alloys: a review. Int Mater Rev. 2013;58:419–436. doi: 10.1179/1743280413Y.0000000017
  • Kim NJ. Critical assessment 6: magnesium sheet alloys: viable alternatives to steels? Mater Sci Technol. 2014;30:1925–1928. doi: 10.1179/1743284714Y.0000000596
  • Gu XN, Li SS, Li XM, et al. Magnesium based degradable biomaterials: a review. Front Mater Sci. 2014;8:200–218. doi: 10.1007/s11706-014-0253-9
  • Wu GS, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys – a review. Surf Coat Technol. 2013;233:2–12. doi: 10.1016/j.surfcoat.2012.10.009
  • Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R – Rep. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001
  • Gnedenkov SV, Sinebryukhov SL, Puz AV, Mashtalyar DV, Opra DP. Corrosion-resistant composite coatings on biodegradable magnesium alloys: in vitro studies. Russ J Inorg Chem. 2016;61:424–428. doi: 10.1134/S0036023616040094
  • Matykina E, Garcia I, Arrabal R, et al. Role of PEO coatings in long-term biodegradation of a Mg alloy. Appl Surf Sci. 2016;389:810–823. doi: 10.1016/j.apsusc.2016.08.005
  • Gnedenkov SV, Sharkeev YP, Sinebryukhov SL, et al. Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: fundamental principles and synthesis conditions. Corros Rev. 2016;34:65–83. doi: 10.1515/corrrev-2015-0069
  • Gao Y, Yerokhin A, Matthews A. Deposition and evaluation of duplex hydroxyapatite and plasma electrolytic oxidation coatings on magnesium. Surf Coat Technol. 2015;269:170–182. doi: 10.1016/j.surfcoat.2015.01.030
  • Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys – a review. Acta Biomater. 2012;8:2442–2455. doi: 10.1016/j.actbio.2012.04.012
  • Hussein RO, Nie X, Northwood DO. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO0) processing. Electrochim Acta. 2013;112:111–119. doi: 10.1016/j.electacta.2013.08.137
  • Wang P, Li J, Guo Y, et al. The formation mechanism of the composited ceramic coating with thermal protection feature on an Al-12Si piston alloy via a modified PEO process. J Alloy Compd 2016;682:357–365. doi: 10.1016/j.jallcom.2016.04.195
  • Rapheal G, Kumar S, Scharnagl N, et al. Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives. Surf Coat Technol. 2016;289:150–164. doi: 10.1016/j.surfcoat.2016.01.033
  • Lu X, Blawert C, Kainer KU, et al. Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles. Electrochim Acta. 2016;196:680–691. doi: 10.1016/j.electacta.2016.03.042
  • Fattah-Alhosseini A, Vakili-Azghandi M, Keshavarz MK. Influence of concentrations of KOH and Na2SiO3 electrolytes on the electrochemical behavior of ceramic coatings on 6061 al alloy processed by plasma electrolytic oxidation. Acta Metall Sin – Engl. 2016;29:274–281. doi: 10.1007/s40195-016-0384-3
  • Yao ZP, Wang DL, Xia QX, et al. Effect of PEO power modes on structure and corrosion resistance of ceramic coatings on AZ91D Mg alloy. Surf Eng. 2012;28:96–101. doi: 10.1179/1743294411Y.0000000045
  • Wei F, Zhang W, Zhang T, et al. Effect of variations of Al content on microstructure and corrosion resistance of PEO coatings on Mg-Al alloys. J Alloy Compd. 2017;690:195–205. doi: 10.1016/j.jallcom.2016.08.111
  • Zhang Y, Blawert C, Tang S, et al. Influence of surface pre-treatment on the deposition and corrosion properties of hydrophobic coatings on a magnesium alloy. Corros Sci. 2016;112:483–494. doi: 10.1016/j.corsci.2016.08.013
  • Joni MS, Fattah-alhosseini A. Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy. J Alloy Compd. 2016;661:237–244. doi: 10.1016/j.jallcom.2015.11.169
  • Aktug SL, Durdu S, Kutbay I, et al. Effect of Na2SiO3·5H2O concentration on microstructure and mechanical properties of plasma electrolytic oxide coatings on AZ31 Mg alloy produced by twin roll casting. Ceram Int. 2016;42:1246–1253. doi: 10.1016/j.ceramint.2015.09.056
  • Dou Q, Li W, Zhang G, et al. Preparation and characterisation of black ceramic coating on AZ91D magnesium alloy by plasma electrolytic oxidation with reduced energy consumption. Mater Res Innov. 2015;19:223–227. doi: 10.1179/1432891715Z.0000000001309
  • Ezhilselvi V, Nithin J, Balaraju JN, et al. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. Surf Coat Technol. 2016;288:221–229. doi: 10.1016/j.surfcoat.2016.01.040
  • Shin KR, Kim YS, Jeong JH, et al. Pore size effect on cell response via plasma electrolytic oxidation. Surf Eng. 2016;32:418–422. doi: 10.1179/1743294415Y.0000000026
  • Anawati DH, Asoh H, Ono S Enhanced uniformity of apatite coating on a PEO film formed on AZ31 Mg alloy by an alkali pretreatment. Surf Coat Technol. 2015;272:182–189. doi: 10.1016/j.surfcoat.2015.04.007
  • Zhang P, Nie X, Northwood DO. Influence of coating thickness on the galvanic corrosion properties of Mg oxide in an engine coolant. Surf Coat Technol. 2009;203:3271–3277. doi: 10.1016/j.surfcoat.2009.04.012
  • Dey A, Umarani R, Thota HK, et al. Corrosion and nanoindentation studies of MAO coatings. Surf Eng. 2014;30:913–919. doi: 10.1179/1743294413Y.0000000244
  • Liu BS, Wei YH, Chen WY, et al. Microporosity formation in Mg alloys and its effect on protective coatings. Surf Eng. 2014;30:939–943. doi: 10.1179/1743294413Y.0000000222
  • Malayoglu U, Tekin KC. Wear behaviour of plasma electrolytic oxide coatings on E21 and WE43 Mg alloys. Surf Eng. 2015;31:526–533. doi: 10.1179/1743294414Y.0000000409
  • Liu C, Liang J, Zhou J, et al. Characterization and corrosion behavior of plasma electrolytic oxidation coated AZ91-T6 magnesium alloy. Surf Coat Technol. 2016;304:179–187. doi: 10.1016/j.surfcoat.2016.07.021
  • Che G, Liu X, Liu J, et al. Electric discharge phenomena and characteristics of coating formed on the surface of AZ91D Alloy during PEO process. Rare Met Mater Eng. 2015;44:897–900.
  • Kumar AM, Kwon SH, Jung HC, et al. Corrosion protection performance of single and dual plasma electrolytic oxidation (PEO) coating for aerospace applications. Mater Chem Phys. 2015;149–150:480–486. doi: 10.1016/j.matchemphys.2014.10.049
  • Li H, Lu S, Qin W, et al. Improving the wear properties of AZ31 magnesium alloy under vacuum low-temperature condition by plasma electrolytic oxidation coating. Acta Astronaut. 2015;116:126–131. doi: 10.1016/j.actaastro.2015.07.005
  • Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.