308
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Engineering crystal orientation of p-Cu2O on heterojunction solar cells

, , , , , , , , & show all
Pages 542-547 | Received 24 Oct 2016, Accepted 23 Jan 2017, Published online: 17 Feb 2017

References

  • Kim TG, Oh HB, Ryu H, et al. The study of post annealing effect on Cu2O thin-films by electrochemical deposition for photoelectrochemical applications. J Alloy Compd. 2014;612:74–79. doi: 10.1016/j.jallcom.2014.05.158
  • Yantara N, Mathews N, Jinesh KB, et al. Modulating the optical and electrical properties of all metal oxide solar cells through nanostructuring and ultrathin interfacial layers. Electrochim Acta. 2012;85:486–491. doi: 10.1016/j.electacta.2012.08.015
  • Smolentsev G, Sundstrom V. Time-resolved X-ray absorption spectroscopy for the study of molecular systems relevant for artificial photosynthesis. Coordin Chem Rev. 2015;304–305:117–132. doi: 10.1016/j.ccr.2015.03.001
  • Hosseinian A, Sheybanifard Z, Mahjoub AR. Investigation of pH effect on the hydrothermal synthesis of highly efficient ZnO nanostructures as photocatalyst. Inorg Nano-Met Chem. 2017;47(2):302–307. doi: 10.1080/15533174.2016.1186042
  • He HY, He Z, Shen Q. Photocatalysis of novel reduced graphene oxide-CoSe nanocomposites with efficient interface-induced effect. Compos Interface. 2017;24(1):85–97. doi: 10.1080/09276440.2016.1190560
  • Wu YW, Zheng WF, Lin LM, et al. Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure. Sol Energy Mater Sol Cells. 2013;115:145–150. doi: 10.1016/j.solmat.2013.03.041
  • Erten-Ela S, Cagatay Cakır A. Dye sensitized solar cells for conversion of solar energy into electricity. Energy Source Part A. 2015;37(8):807–816. doi: 10.1080/15567036.2011.572118
  • Jiang TF, Xie TF, Chen LP, et al. Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance. Nanoscale. 2013;5(7):2938–2944. doi: 10.1039/c3nr34219k
  • Li J, Li HB, Xue Y, et al. Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing. Sensor Actuat B-Chem. 2014;191:619–624. doi: 10.1016/j.snb.2013.10.060
  • Chou SM, Hon MH, Leu IC, et al. Al-Doped ZnO∕Cu2O heterojunction fabricated on (200) and (111)-orientated Cu2O substrates. J Electrochem Soc. 2008;155(11):H923–H928. doi: 10.1149/1.2980424
  • Loferski JJ. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl Phys. 1956;27(7):777–784. doi: 10.1063/1.1722483
  • Hussain S, Cao CB, Nabi G, et al. Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells. Electrochim Acta. 2011;56(24):8342–8346. doi: 10.1016/j.electacta.2011.07.017
  • Chen SJ, Lin LM, Liu JY, et al. An electrochemical constructed p-Cu2O/n-ZnO heterojunction for solar cell. J Alloy Compd. 2015;644:378–382. doi: 10.1016/j.jallcom.2015.02.230
  • Izaki M, Ohta T, Kondo M, et al. Electrodeposited ZnO – nanowire/Cu2O photovoltaic device with highly resistive ZnO intermediate layer. ACS Appl Mater Inter. 2014;6(16):13461–13469. doi: 10.1021/am502246j
  • Nishi Y, Miyata T, Minami T. The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells. Thin Solid Films. 2013;528:72–76. doi: 10.1016/j.tsf.2012.09.090
  • Nishi Y, Miyata T, Minami T. Effect of inserting a thin buffer layer on the efficiency in n -ZnO/p-Cu2O heterojunction solar cells. J Vac Sci Technol A. 2012;30(4):04D103. doi: 10.1116/1.3698596
  • Minami T, Miyata T, Nishi Y. Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Sol Energy. 2014;105:206–217. doi: 10.1016/j.solener.2014.03.036
  • Lv PW., Lin LM, Zheng WF, et al. Photosensitivity of ZnO/Cu2O thin film heterojunction. Optik. 2013;124(17):2654–2657. doi: 10.1016/j.ijleo.2012.07.040
  • Yu XJ, Huang LZ, Wei YC, et al. Controllable preparation, characterization and performance of Cu2O thin film and photocatalytic degradation of methylene blue using response surface methodology. Mater Res Bull. 2015;64:410–417. doi: 10.1016/j.materresbull.2015.01.009
  • Minami T, Nishi Y, Miyata T. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as N-type layer. Appl Phys Express. 2013;6(4):044101. doi: 10.7567/APEX.6.044101
  • Lee YS, Chua D, Brandt RE, et al. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv Mater. 2014;26(27):4704–+. doi: 10.1002/adma.201401054
  • Abdu YM, Bayero AO. Copper (I) oxide (Cu2O) based solar cells - a review. J Pure Appl Sci. 2009;2(2):8–12.
  • Liang RM, Chang YM, Wu PW, et al. Effect of annealing on the electrodeposited Cu2O films for photoelectrochemical hydrogen generation. Thin Solid Films. 2010;518(24):7191–7195. doi: 10.1016/j.tsf.2010.04.073
  • Wang LC, de Tacconi NR, Chenthamarakshan CR, et al. Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films. 2007;515(5):3090–3095. doi: 10.1016/j.tsf.2006.08.041
  • Wang XZ, Chen MJ, He YR, et al. Shape-controlled preparation of Cu2O crystals and their growth mechanism. J Alloys Compd. 2015;628:50–56. doi: 10.1016/j.jallcom.2014.11.224
  • Selmi M, Chaabouni F, Abaab M, et al. Studies on the properties of sputter-deposited Al-doped ZnO films. Superlattice Microstruct. 2008;44(3):268–275. doi: 10.1016/j.spmi.2008.06.005
  • Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem. 1995;99(45):16646–16654. doi: 10.1021/j100045a026
  • Anu A, Khadar MA. Grain size tuning of nanostructured Cu2O films through vapour phase supersaturation control and their characterization for practical applications. AIP Adv. 2015;5:097176. doi: 10.1063/1.4932087
  • Shyamal S., Hajra P., Mandal H., et al. Effect of substrates on the photoelectrochemical reduction of water over cathodically electrodeposited p-type Cu2O thin films. Appl Mater Inter. 2015;7(33):18344–18352. doi: 10.1021/acsami.5b04116
  • Yu PY, Shen YR. Resonance Raman studies in Cu2O. I. The phonon-assisted 1s yellow excitonic absorption edge. Phys Rev B. 1975;12(4):1377–1394. doi: 10.1103/PhysRevB.12.1377
  • Compaan A, Cummins HZ. Resonant quadrupole-dipole raman scattering at the 1S yellow exciton in Cu2O. Phys Rev Lett. 1973;31(1):41–44. doi: 10.1103/PhysRevLett.31.41
  • Wei HM, Gong HB, Chen L, et al. Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C. 2012;116(19):10510–10515. doi: 10.1021/jp301904s
  • Kang Z, Yan XQ, Wang YF, et al. Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered biosensing application. Sci Rep – UK. 2015;5;5:7882. doi: 10.1038/srep07882
  • Gershon T, Musselman KP, Marin A, et al. Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer. Sol Energy Mater Sol Cells. 2012;96(1):148–154. doi: 10.1016/j.solmat.2011.09.043
  • Zhang DK, Liu YC, Liu YL, et al. The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction. Physica B. 2004;351(1–2):178–183. doi: 10.1016/j.physb.2004.06.003
  • Ishizuka S, Suzuki K, Okamoto Y, et al. Polycrystallinen-ZnO/p-Cu2O heterojunctions grown by RF-magnetron sputtering. Physica Status Solidi (c). 2004;1(4):1067–1070. doi: 10.1002/pssc.200304245

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.