267
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of electro-thermal property of Cu-MWCNT-coated 316L stainless steel

&
Pages 697-704 | Received 06 May 2017, Accepted 17 Oct 2017, Published online: 30 Oct 2017

References

  • Chevalier S, Caboche G, Przybylski K, et al. Effect of nano-layered ceramic coatings on the electrical conductivity of oxide scale grown on ferritic steels. J Appl Electrochem. 2008;39:529–534. doi: 10.1007/s10800-008-9726-9
  • Lee YB, Lim DS. Electrical and corrosion properties of stainless steel bipolar plates coated with a conduction polymer composite. Curr Appl Phys. 2010;10:18–21. doi: 10.1016/j.cap.2009.11.007
  • Tong Y, Bohm S, Song M. Carbon based coating on steel with improved electrical conductivity. Austin J Nanomed Nanotechnol. 2015;3(1):1041.
  • Gannon PE, Tripp CT, Knospe AK, et al. High-temperature oxidation resistance and surface electrical conductivity of stainless steels with filtered arc Cr–Al–N multilayer and/or superlattice coatings. Surf Coatings Technol. 2004;189:55–61. doi: 10.1016/j.surfcoat.2004.08.067
  • Ho WY. Pan H, Chang CL.et al. Corrosion and electrical properties of multi-layered coatings on stainless steel for PEMFC bipolar plate applications. Surf Coatings Technol. 2007;202:1297–1301. doi: 10.1016/j.surfcoat.2007.07.056
  • Wei P, Deng X, Bateni MR, et al. Oxidation behaviour and conductivity of UNS 430 stainless steel and Crofer 22 APU with spinel coatings. ECS Trans. 2007;7:2135–2143. doi: 10.1149/1.2729328
  • Rashtchi H, Sani MAF, Dayaghi AM. Effect of Sr and Ca dopants on oxidation and electricalproperties of lanthanum chromite-coated AISI 430 stainless steel for solid oxide fuel cell interconnect application. Ceram Int. 2013;39:8123–8131. doi: 10.1016/j.ceramint.2013.03.085
  • Balasubramanian A, Srikumar DS, Raja G, et al. Effect of pulse parameter on pulsedelectrodeposition of copper on stainless steel. Surf Eng. 2009;25(5):389–392. doi: 10.1179/026708408X344680
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0
  • Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84(20):4613–4616. doi: 10.1103/PhysRevLett.84.4613
  • Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett. 2001;79(8):1172–1174. doi: 10.1063/1.1396632
  • Yu M F, Lourie O, Dyer MJ, Moloni K, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287:637–640. doi: 10.1126/science.287.5453.637
  • Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett. 1997;79(7):1297–1300. doi: 10.1103/PhysRevLett.79.1297
  • Low CTJ, Wills RGA, Walsh FC. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coatings Technol. 2006;201:371–383. doi: 10.1016/j.surfcoat.2005.11.123
  • Ghazanlou SI, Ahmadiyeh S, Yavari R. Investigation of pulse electrodeposited Ni–Co/SiO2 nanocomposite coating. Surf Eng. 2016: 1–6. DOI:10.1080/02670844.2016.1275484.
  • Ramalingam S, Muralidharan VS, Subramania A. Electrodeposition and characterization of Cu-TiO2 nanocomposite coatings. J Solid State Electrochem. 2009;13(11):1777–1783. doi: 10.1007/s10008-009-0870-x
  • Ramalingam S, Muralidharan V S, Subramania A. Electrodeposition and characterisation of Cu–CeO2 nanocomposite coatings. Surf Eng. 2013;29(7):511–515. doi: 10.1179/1743294413Y.0000000153
  • Tey E, Hashim M, Ismail I. Characterization of Cu-Al2O3 and Ni-Al2O3Nanocomposites electrodeposited on copper substrate. Mater Sci Forum. 2016;846:471–478. doi: 10.4028/www.scientific.net/MSF.846.471
  • Allahyarzadeh MH, Aliofkhazraei M, Rouhaghdam AS, et al. Electrodeposition of multilayer Ni–W and Ni–W–alumina nanocomposite coatings. Surf Eng. 2017; DOI:10.1080/02670844.2016.1277640.
  • Ramalingam S, Muralidharan V S, Subramania A. Mechanical and corrosion resistance properties of electrodeposited Cu–ZrO2 nanocomposites. Trans IMF. 2015;93(5):262–266. doi: 10.1080/00202967.2015.1114727
  • Mangam V, Das K, Das S. Structure and properties of electrocodeposited Cu–CeO2 nanocomposite thin films. Mater Chem Phys. 2010;120:631–635. doi: 10.1016/j.matchemphys.2009.12.017
  • Pradhan AK, Das S. Pulse-reverse electrodeposition of Cu–SiC nanocomposite coating: effect of concentration of SiC in the electrolyte. J Alloys Compd. 2014;590:294–302. doi: 10.1016/j.jallcom.2013.12.139
  • Manua R, Priya S. Implication of electrodeposition parameters on the architecture behavior of MWCNT – incorporated metal matrix. Appl Surf Sci. 2013;284:270–277. doi: 10.1016/j.apsusc.2013.07.093
  • Gul H, Uysal M, Akbulut H, et al. Tribological behavior of copper/MWCNT nanocomposite produced by pulse electrodeposition. Acta Phys Polonica A. 2014;125:254–256. doi: 10.12693/APhysPolA.125.254
  • Arai S, Miyagawa K. Frictional and wear properties of cobalt/multiwalled carbon nanotube composite films formed by electrodeposition. Surf Coatings Technol. 2013;235:204–211. doi: 10.1016/j.surfcoat.2013.07.034
  • Anand EE, Natarajan S. Effect of carbon nanotubes on corrosion and Tribological properties of pulse-electrodeposited Co-W composite coatings. J Mater Eng Perform. 2015;24(1):128–135. doi: 10.1007/s11665-014-1306-z
  • Li H, He Y, Fan Y, et al. Pulse electrodeposition and corrosion behavior of Ni–W/MWCNT nanocomposite coatings. RSC Adv. 2015;5:68890–66889. doi: 10.1039/C5RA09462C
  • Huang G, Wang H, Cheng P, et al. Preparation and characterization of the graphene-Cu composite film by electrodeposition process. Microelectron Eng. 2016;157:7–12. doi: 10.1016/j.mee.2016.02.006
  • Ramalingam S, Balakrishnan K, Shanmugasamy S, et al. Electrodeposition and characterisation of Cu–MWCNTs nanocomposite coatings. Surf Eng. 2016: 1–6. DOI:10.1080/02670844.2016.1258164.
  • Feng Y, McGuire GE, Shenderova OA, et al. Fabrication of copper/carbon nanotube composite thin films by periodic pulse reverse electroplating using nanodiamond as a dispersing agent. Thin Solid Films. 2016;615:116–121. doi: 10.1016/j.tsf.2016.07.015
  • Chai G, Chen Q. Characterization study of the thermal conductivity of carbon nanotube copper nano composites. J Compos Mater. 2010;44:2863–2873. doi: 10.1177/0021998310371530
  • Suzuki T, Kato M, Saito H, et al. Effect of carbon nanotube (CNT) size on wear properties of Cu-based CNT composite electrodes in electrical discharge machining. J Solid Mech Mater Eng. 2011;5(7):348–359. doi: 10.1299/jmmp.5.348

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.