197
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Influence of laser scanning speed on nitrided Ti6Al4V surface

, ORCID Icon &
Pages 1285-1293 | Received 08 May 2017, Accepted 20 Nov 2017, Published online: 05 Dec 2017

References

  • Goldberga JR, Gilbert JL. The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys. Biomaterials. 2004;25:851. doi: 10.1016/S0142-9612(03)00606-9
  • Singh R, Dahotre NB. Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci: Mater Med. 2007;18:725–751.
  • Dahotre SN, Vora HD, Rajmure RS, et al. Laser induced nitrogen enhanced titanium surfaces for improved osseo-integration. Annals Biomed Eng. 2014;42:50–61. doi: 10.1007/s10439-013-0898-z
  • Yue TM, Yu JK, Mei Z, et al. Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion resistance enhancement. Mater Lett. 2002;52:206. doi: 10.1016/S0167-577X(01)00395-0
  • Singh R, Kurella A, Dahotre NB. Laser surface modification of Ti–6Al–4V: wear and corrosion characterization in simulated biofluid. J. Biomater Appl. 2006;21:49. doi: 10.1177/0885328206055998
  • Singh R, Dahotre NB. Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti–6Al–4V in simulated biofluid. Surf Eng. 2005;21:297. doi: 10.1179/174329405X55320
  • Weerasinghe VM, West DRF, Damborenea JD. Laser surface nitriding of titanium and a titanium alloy. J Mater Process Technol. 1996;58:79. doi: 10.1016/0924-0136(95)02110-8
  • Dahotre NB, Kurrela A. Surface Modification for Bioimplants: The Role of Laser Surface Engineering. J. Biomater Appl. 2005;20:59.
  • Chan CW, Lee S, Smith GC, et al. Fibre laser nitriding of titanium and its alloy in open atmosphere for orthopaedic implant applications: investigations on surface quality, microstructure and tribological properties. Surf Coat Technol. 2017;309:628–640. doi: 10.1016/j.surfcoat.2016.12.036
  • Wang M, Ning Y, Zou H, et al. Effect of Nd:YAG laser-nitriding-treated titanium nitride surface over Ti6Al4V substrate on the activity of MC3T3-E1 cells. Biomed Mater Eng. 2014;24:643–649.
  • Gyorgy E, Pino APD, Sera P, et al. Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf Coat Technol. 2003;173 :265. doi: 10.1016/S0257-8972(03)00520-6
  • Gracia-Alonso MC, Saldana L, Valles G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials. 2003;24:19. doi: 10.1016/S0142-9612(02)00237-5
  • Wilson AD, Leyland A, Mathews A. A comparative study of the influence of plasma treatments, PVD coatings and ion implantation on the tribological performance of Ti–6Al–4V. Surf Coat Technol. 1999;114:70. doi: 10.1016/S0257-8972(99)00024-9
  • Harman MK, Banks SA, Hodge WA. Polyethylene damage and knee kinematics after total knee arthroplasty. Clin Orthopaed Relat Res. 2001;392:383. doi: 10.1097/00003086-200111000-00050
  • Hu C, Xin H, Watson LM, et al. Analysis of the phases developed by laser nitriding Ti6Al4V alloys. Acta Mater. 1997;45:4311–4322. doi: 10.1016/S1359-6454(97)00076-1
  • Chen X, Wu G, Wang R, et al. Laser nitriding of titanium alloy in the atmosphere environment. Surf Coat Technol. 2007;201:4843–4846. doi: 10.1016/j.surfcoat.2006.07.186
  • Abboud JH, Fidel AF, Benyounis KY. Surface nitriding of Ti–6Al–4V alloy with a high power CO2 laser. Opt Laser Technol. 2008;40:405–414. doi: 10.1016/j.optlastec.2007.07.005
  • Robinson JM, Van Brussel BA, Th J, et al. X-ray measurement of residual stresses in laser surface melted Ti-6Al-4V alloy. J Mater Sci. 1996;208:143.
  • Sathish S, Geetha M, Pandey ND, et al. Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Mater Sci Eng C. 2010;30:376–382. doi: 10.1016/j.msec.2009.12.004
  • Wasilewski RJ, Kehl GL., et al. Diffusion of nitrogen and oxygen in titanium. J of Inst Met. 1954;83:94–104.
  • Silva RA, Barbosa MA, Vilar R, et al. Electrochemical studies of laser-treated Co-Cr-Mo alloy in a simulated physiological solution. J. Mater Sci: Mater Med. 1994;5:353–356.
  • Ho Y-H, Vora HD, Dahotre NB. Laser surface modification of AZ31B Mg alloy for bio-wettability. J Biomater Appl. 2015;29:915–928. doi: 10.1177/0885328214551156
  • Sivakumar B, Pathak LC, Singh R. Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in ringer’s solution for bio-implant application. Appl Surf Sci. 2017;401:385–398. doi: 10.1016/j.apsusc.2017.01.033
  • El-Taib Heakal F, Ghoneim AA, Mogoda AS, et al. Electrochemical behaviour of Ti–6Al–4V alloy and Ti in azide and halide solutions. Corros Sci. 2011;53:2728. doi: 10.1016/j.corsci.2011.05.003
  • Sivakumar B., Pathak L. C., Singh R. Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in Ringer’s solution for bio-implant application. Appl Surf Sci. 2017;401:385–396. doi: 10.1016/j.apsusc.2017.01.033
  • Tian B, Xie DB, Wang FH. Corrosion behavior of TiN and TiN/Ti composite films on Ti6Al4V alloy in hank’s solution. J Appl Electrochem. 2009;39:447–453. doi: 10.1007/s10800-008-9690-4
  • Azumi K, Seo M. Changes in electrochemical properties of the anodic oxide film formed on titanium during potential sweep. Corros Sci. 2001;43:533–546. doi: 10.1016/S0010-938X(00)00105-0
  • Peláez-Abellán E, Rocha-Sousa L, Müller WD, et al. Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3V in a simulated physiological solution. Corros Sci. 2007;49:1645–1655. doi: 10.1016/j.corsci.2006.08.010
  • Osorio WR, Rosa DM, Garcia A. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb–Sb alloys for lead acid battery grids. J Power Sour. 2008;175:595–603. doi: 10.1016/j.jpowsour.2007.08.091
  • Oskooie MS, Motlagh MS, Aghajani H. Surface properties and mechanism of corrosion resistance enhancement in a high temperature nitrogen ion implanted medical grade Ti. Surf Coat Technol. 2016;291:356–364. doi: 10.1016/j.surfcoat.2016.02.032
  • Jones DA. Principle and prevention of corrosion. Upper Saddle River, NJ: Prentice Hall; 1996, p. 175–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.