398
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Correlation between particle size and porosity of Fe-based amorphous coating

, , &
Pages 37-45 | Received 12 Nov 2017, Accepted 27 Feb 2018, Published online: 15 Mar 2018

References

  • Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989;58:63–70. doi: 10.1016/0032-5910(89)80008-7
  • Ranz W, Marshall W. Evaporation from drops. Chem Eng Prog. 1952;48:141–146.
  • Kamnis S, Gu S. 3-D modelling of kerosene-fuelled HVOF thermal spray gun. Chem Eng Sci. 2006;61:5427–5439. doi: 10.1016/j.ces.2006.04.005
  • Tabbara H, Gu S. Computation simulation of liquid-fuelled HVOF thermal spraying. Surf Coat Technol. 2009;204:676–684. doi: 10.1016/j.surfcoat.2009.09.005
  • Pawlowski L. The science and engineering of thermal spray coatings. 2nd ed. Chichester: John Wiley & Sons; 2008.
  • Davis JR. Handbook of thermal spray technology. Materials Park (OH): ASM International; 1997.
  • Zhang C, Guo RQ, Yang Y, et al. Influence of the size of spraying powders on the microstructure and corrosion resistance of Fe-based amorphous coating. Electrochim Acta. 2011;56:6380–6388. doi: 10.1016/j.electacta.2011.05.020
  • Zhang SD, Zhang WL, Wanga SG, et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behavior. Corros Sci. 2015;93:211–221. doi: 10.1016/j.corsci.2015.01.022
  • Zhang SD, Wu J, Qi WB, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel. Corros Sci. 2016;110:57–70. doi: 10.1016/j.corsci.2016.04.021
  • He J, Ice M, Lavernia E. Particle melting behavior during high-velocity oxygen fuel thermal spraying. J Therm Spray Technol. 2001;10:83–93. doi: 10.1361/105996301770349385
  • Hanson TC, Settles GS. Particle temperature and velocity effects on the porosity and oxidation of an HVOF corrosion-control coating. J Therm Spray Technol 2003;12:403–415. doi: 10.1361/105996303770348276
  • Li MH, Christofides PD. Computational study of particle in-flight behavior in the HVOF thermal spray process. Chem Eng Sci. 2006;61:6540–6552. doi: 10.1016/j.ces.2006.05.050
  • Cheng D, Xu Q, Trapaga G, et al. The effect of particle eize and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying. Metall Mater Trans B. 2001;32:525–535. doi: 10.1007/s11663-001-0037-3
  • Kamnis S, Gu S, Zeoli N. Mathematical modelling of inconel 718 particles in HVOF thermal spraying. Surf Coat Technol. 2008;202:2715–2724. doi: 10.1016/j.surfcoat.2007.10.006
  • Pan JJ, Hu SS, Yang LJ, et al. Numerical analysis of flame and particle behavior in an HVOF thermal spray process. Mater Des. 2016;96:370–376. doi: 10.1016/j.matdes.2016.02.008
  • Shi D, Li MH, Christofides PD. Diamond jet hybrid HVOF thermal spray: rule-based modeling of coating microstructure. Ind Eng Chem Res. 2004;43:3653–3665. doi: 10.1021/ie030560h
  • Li MH, Shi D, Christofides PD. Modeling and control of HVOF thermal spray processing of WC-Co coatings. Powder Technol. 2005;156:177 –1194. doi: 10.1016/j.powtec.2005.04.011
  • Ghafouri-Azar R, Mostaghimi J, Chandra S, et al. A stochastic model to simulate the formation of a thermal spray coating. J Therm Spray Technol. 2003;12:53–69. doi: 10.1361/105996303770348500
  • Mostaghimi J, Chandra S, Ghafouri-Azar R, et al. Modeling thermal spray coating processes: a powerful tool in design and optimization. Surf Coat Technol. 2003;163–164:1–11. doi: 10.1016/S0257-8972(02)00686-2
  • Kishitake K, Era H, Otsubo F. Thermal-sprayed Fe-10CM3P-7C amorphous coatings possessing excellent corrosion resistance. J Therm Spray Technol. 1996;5:476–482. doi: 10.1007/BF02645279
  • Otsubo F, Kishitake K. Corrosion resistance of Fe-16%Cr-30%Mo-(C,B,P) amorphous coatings sprayed by HVOF and APS processes. Mater Trans. 2005;46:80–83. doi: 10.2320/matertrans.46.80
  • Branagan DJ, Swank WD, Meacham BE. Maximizing the glass fraction in iron-based high velocity oxy-fuel coatings. Metall Mater Trans A. 2009;40A:1307–1313.
  • Ma HR, Chen XY, Li JW, et al. Fe-based amorphous coating with high corrosion and wear resistance. Surf Eng. 2017;33:56–62. doi: 10.1080/02670844.2016.1176718
  • Zoisa D, Lekatoua A, Vardavouliasb M. Preparation and characterization of highly amorphous HVOF stainless steel coatings. J Alloys Compd. 2010;504:S283–S287. doi: 10.1016/j.jallcom.2010.02.062
  • Farmer JC, Haslam JJ, Day SD, et al. Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe49.7Cr17.7Mn1.9Mo7.4 W1.6B15.2C3.8Si2.4. J Mater Res. 2007;22:2297–2311. doi: 10.1557/jmr.2007.0291
  • Zhou Z, Wang L, Wang FC, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf Coat Technol. 2009;204:563–570. doi: 10.1016/j.surfcoat.2009.08.025
  • Farmer J, Choi J-S, Saw C, et al. Iron-based amorphous metals: high-performance corrosion-resistant material development. Metall Mater Trans A. 2009;40:1289–1305. doi: 10.1007/s11661-008-9779-8
  • Li ML, Shi D, Christofides PD. Diamond jet hybrid HVOF thermal spray: gas-phase and particle behavior modeling and feedback control design. Ind Eng Chem Res. 2004;43:3632–3652. doi: 10.1021/ie030559i
  • Tabbara H, Gu S. Computational simulation of liquid-fuelled HVOF thermal spraying. Surf Coat Technol. 2009;204:676–684. doi: 10.1016/j.surfcoat.2009.09.005
  • Kamnis S, Gu S. Numerical modelling of propane combustion in a high velocity oxygen-fuel thermal spray gun. Chem Eng Process. 2006;45:246–253. doi: 10.1016/j.cep.2005.06.011
  • Li ML, Christodes PD. Feedback control of HVOF thermal spray process accounting for powder size distribution. J Therm Spray Technol. 2004;13:108–120. doi: 10.1007/s11666-004-0055-1
  • Khan MN, Shamim T. Investigation of a dual-stage high velocity oxygen fuel thermal spray system. Appl Energy. 2014;130:853–862. doi: 10.1016/j.apenergy.2014.03.075
  • Montavon G, Coddet C, Berndt CC, et al. Microstructure index to quantify thermal spray deposit microstructures using image analysis. J Therm Spray Technol. 1998;7:229–241. doi: 10.1361/105996398770350972
  • Deshpande S, Kulkarni A, Sampath S, et al. Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering. Surf Coat Technol. 2004;187:6–16. doi: 10.1016/j.surfcoat.2004.01.032
  • Tabbara H, Gu S. A study of liquid droplet disintegration for the development of nanostructured coatings. Aiche J. 2012;58:3533–3544. doi: 10.1002/aic.13755
  • Voggenreiter HF, Huber S, Beyer S, et al. Influence of particle velocity and molten phase on the chemical and mechanical properties of HVOF-sprayed structural coatings of alloy 316L. Materials Park (OH): ASM International; 1995.
  • Voggenreiter HF, Huber H, Spies HJ, et al. HVOF sprayed alloy In718 -the influence of process parameters on the microstructure and mechanical properties. Materials Park (OH): ASM International; 1997.
  • Gil L, Staia MH. Influence of HVOF parameters on the corrosion resistance of NiWCrBSi coatings. Thin Solid Films. 2002;446:420–421.
  • Hearley JA, Little JA, Sturgeon JA. The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings. Surf Coat Technol. 2000;123:210–218. doi: 10.1016/S0257-8972(99)00511-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.