204
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

The corrosion properties of carbon nanotubes-reinforced apatite composite coating on carbon/carbon composite by a double in situ process

, , , &
Pages 96-101 | Received 06 Sep 2017, Accepted 22 Mar 2018, Published online: 13 Apr 2018

References

  • Liu SJ, Li HJ, Zhang LL, et al. Strontium and magnesium substituted dicalcium phosphate dehydrate coating for carbon/carbon composites prepared by pulsed electrodeposition. Appl Surf Sci. 2015;359:288–292. doi: 10.1016/j.apsusc.2015.10.134
  • Akay G, Birch MA, Bokhari MA. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Biomaterials. 2004;25:3991–4000. doi: 10.1016/j.biomaterials.2003.10.086
  • Pereiro I, Rodriguez-Valencia C, Serra C, et al. Pulsed laser deposition of strontium-substituted hydroxyapatite coatings. Appl Surf Sci. 2012;258:9192–9197. doi: 10.1016/j.apsusc.2012.04.063
  • Xiong XB, Chu CC, Huang JF, et al. Preparation and characterization of fluoridated hydroxyapatite coatings on HT-C/C composites. Surf Coat Technol. 2012;206:2535–2540. doi: 10.1016/j.surfcoat.2011.11.006
  • Wang HJ, Zhao CL, Chen Y, et al. Electrochemical property and in vitro degradation of DCPD-PCL composite coating on the biodegradable Mg-Zn alloy. Mater Lett. 2012;68:435–438. doi: 10.1016/j.matlet.2011.11.029
  • Abden MJ, Afroze JD, Alam MS, et al. Pressureless sintering and mechanical properties of hydroxyapatite/functionalized multi-walled carbon nanotube composite. Mater Sci Eng. 2016;67:418–424. doi: 10.1016/j.msec.2016.05.018
  • An Q, Rider AN, Thostension ET. Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon. 2012;50:4130–4143. doi: 10.1016/j.carbon.2012.04.061
  • Lahiri I, Lahiri D, Jin SH, et al. Carbon nanotubes: how strong is their bond with the substrate? Nano. 2011;5:780–787.
  • White AA, Best SM, Kinloch IA. Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol. 2007;4:1–13. doi: 10.1111/j.1744-7402.2007.02113.x
  • Price RL, Waid MC, Haberstroh KM, et al. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials. 2003;24:1877–1887. doi: 10.1016/S0142-9612(02)00609-9
  • Flahaut E, Durrieu MC, Remy-Zolghadri M, et al. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon. 2006;44:1093–1099. doi: 10.1016/j.carbon.2005.11.007
  • Saito N, Haniu H, Usui Y, et al. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev. 2014;114:6040–6079. doi: 10.1021/cr400341h
  • Balani K, Chen Y, Harimkar SP, et al. Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomater. 2007;3:944–951. doi: 10.1016/j.actbio.2007.06.001
  • Bai Y, Neupane MP, Park IS, et al. Electrophoretic deposition of carbon nanotubes-hydroxyapatite nanocomposites on titanium substrate. Mater Sci Eng. 2010;30:1043–1049. doi: 10.1016/j.msec.2010.05.007
  • Liu SJ, Li HJ, Zhang LL, et al. Pulsed electrodeposition of carbon nanotubes-hydroxyapatite nanocomposites for carbon/carbon composites. Ceram Int. 2016;42:15650–15657. doi: 10.1016/j.ceramint.2016.07.020
  • Kheradmandfard M, Fathi MH, Ahangarian M, et al. In vitro bioactivity evaluation of magnesium-substituted fluorapatite nanopowders. Ceram Int. 2012;38:169–175. doi: 10.1016/j.ceramint.2011.05.157
  • Kim HY, Himeno T, Kawashita M, et al. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. J R Soc Interface. 2004;1:17–22. doi: 10.1098/rsif.2004.0003
  • Aryal S, Bhattarai SR, Remant Bahadur KC, et al. Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid. Mater Sci Eng A. 2006;426:202–207. doi: 10.1016/j.msea.2006.04.004
  • Feng L, Li KZ, Zhao ZG, et al. Three-dimensional carbon/carbon composites with vertically aligned carbon nanotubes: providing direct and indirect reinforcements to pyrocarbon matrix. Mater Des. 2016;92:120–128. doi: 10.1016/j.matdes.2015.12.036
  • Hazarika A, Maji TK. Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymer nanocomposite. Chem Eng J. 2014;247:33–41. doi: 10.1016/j.cej.2014.02.069
  • Baishya P, Maji TK. Functionlization of MWCNT and their application in properties development of green wood nanocomposite. Carbohydr Polym. 2016;149:332–339. doi: 10.1016/j.carbpol.2016.04.117
  • Paital SR, Dahotre NB. Laser surface treatment for porous and textured Ca-P bio-ceramic coating on Ti-6Al-4V. Biomed Mater. 2007;2:274–281. doi: 10.1088/1748-6041/2/4/011
  • Li P, Yang Q, Zhang F. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J Mater Sci. 1992;3:452–456.
  • Bornapour M, Muja N, Shun-Tim D, et al. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater. 2013;9:5319–5330. doi: 10.1016/j.actbio.2012.07.045
  • Gopi D, Shinyjoy E, Sekar M, et al. Development of carbon nanotubes reinforced hydroxyapatite composite coating on titanium by electrodeposition method. Corros Sci. 2013;73:321–330. doi: 10.1016/j.corsci.2013.04.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.