278
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Thickness effect on electrical properties of copper oxide thin films

, , &
Pages 86-90 | Received 15 Nov 2017, Accepted 16 Apr 2018, Published online: 21 May 2018

References

  • Yang KG, Hu P, Wu SX, et al. Room-temperature ferromagnetic CuO thin film grown by plasma-assisted molecular beam epitaxy. Mater Lett. 2016;166:23–25. doi: 10.1016/j.matlet.2015.11.128
  • Hu P, Li XY, Lu JQ, et al. Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films. Phys Lett A. 2011;375:1898–1902. doi: 10.1016/j.physleta.2011.03.033
  • Wu X, Liu J, Huang P, et al. Engineering crystal orientation of p-Cu2O on heterojunction solar cells. Surf Eng. 2017;33:542–547. doi: 10.1080/02670844.2017.1288342
  • Serin N, Serin T, Horzum S, et al. Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semicond Sci Technol 2005;20:398–401. doi: 10.1088/0268-1242/20/5/012
  • Oral AY, Mensur E, Aslan MH, et al. The preparation of copper (II) oxide thin films and the study of their microstructures and optical properties. Mater Chem Phys. 2004;83:140–144. doi: 10.1016/j.matchemphys.2003.09.015
  • Morales J, Sanchez L, Martin F, et al. Use of low temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films. 2005;474:133–140. doi: 10.1016/j.tsf.2004.08.071
  • Zheng XG, Suzuki M, Xu CN. A new approach to single crystal growth of CuO. Mater Res Bull 1998;33:605–610. doi: 10.1016/S0025-5408(98)00010-5
  • Pham TV, Rao M, Andreasson P, et al. Photocarrier generation in CuxO thin films deposited by radio frequency sputtering. Appl Phys Lett. 2013;102:032101. doi: 10.1063/1.4788680
  • Heinemann M, Eifert B, Heiliger C. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys Rev B. 2013;87:115111. doi: 10.1103/PhysRevB.87.115111
  • Karthick Kumar S, Suresh S, Murugesan S, et al. Cuo thin films made of nanofibers for solar selective absorber applications. Sol Energy. 2013;94:299–304. doi: 10.1016/j.solener.2013.05.018
  • Wang J, Zhang W-D, Ouyang W-X, et al. Hierarchically branched ZnO/CuO thin film with enhanced visible light photoelectrochemical property. Mater Lett. 2015;154:44–46. doi: 10.1016/j.matlet.2015.04.048
  • Raebiger H, Lany S, Zunger A. Phys Rev B. 2007;76(1–5):045209. doi: 10.1103/PhysRevB.76.045209
  • Musa AO, Akomolafe T, Carter MJ. Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol Energy Mater Sol Cells. 1998;51:305–316. doi: 10.1016/S0927-0248(97)00233-X
  • Ogwu AA, Bouguerel E, Ademosu O, et al. The influence of rf power and oxygen flow rate during deposition on the optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering. J Phys D: Appl Phys 2005;38:266–271. doi: 10.1088/0022-3727/38/2/011
  • Chand P, Gaur A, Kumar A, et al. Structural and optical study of Li doped CuO thin films on Si (100) substrate deposited by pulsed laser deposition. Appl Surf Sci 2014;307:280–286. doi: 10.1016/j.apsusc.2014.04.027
  • Mukherjee N, Show B, Maji SK, et al. Cuo nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater Lett 2011;65:3248–3250. doi: 10.1016/j.matlet.2011.07.016
  • Feng JK, Xia H, Lai MO, et al. Electrochemical performance of CuO nanocrystal film fabricated by room temperature sputtering. Mater Res Bull 2011;46:424–427. doi: 10.1016/j.materresbull.2010.12.006
  • Gong YS, Lee C, Yang CK. Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films. J Appl Phys 1995;77:5422–5425. doi: 10.1063/1.359234
  • Bayansal F, Çetinkara HA, Kahraman S, et al. Nano-structured CuO films prepared by simple solution methods: plate-like, needle-like and network-like architectures. Ceram Int 2012;38:1859–1866. doi: 10.1016/j.ceramint.2011.10.011
  • Das S, Majumdar S, Giri S. Room temperature weak ferromagnetism and magnetoconductance in functional CuO film. Appl Surf Sci 2011;257:10775–10779. doi: 10.1016/j.apsusc.2011.07.096
  • Dhanasekaran V, Mahalingam T. Surface modifications and optical variations of (-111) lattice oriented CuO nanofilms for solar energy applications. Mater Res Bull. 2013;48:3585–3593. doi: 10.1016/j.materresbull.2013.05.072
  • Korkmaz S, Geçici B, Deniz Korkmaz S, et al. Morphology, composition, structure and optical properties of CuO/Cu2O thin films prepared by RF sputtering method. Vacuum. 2016;131:142–146. doi: 10.1016/j.vacuum.2016.06.010
  • Shabu R, Moses Ezhil Raj A, Sanjeeviraja C, et al. Assessment of CuO thin films for its suitability as window absorbing layer in solar cell fabrications. Mater Res Bull. 2015;68:1–8. doi: 10.1016/j.materresbull.2015.03.016
  • Hadef Z, Kamli K, Attaf A, et al. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis. J Semicond. 2017;38(6):063001. doi: 10.1088/1674-4926/38/6/063001
  • Kamli K, Hadef Z, Chouial B, et al. Synthesis and characterisation of tin sulphide thin films. Sur Eng. 2017;33:567–572. doi: 10.1080/02670844.2016.1271593
  • Aida MS, Baghriche L, Zebbar N, et al. Nanocrystalline ZnO thin film growth by ultrasonic spray from a non-aqueous solution. J Nanoeng Nanosyst. 2010;223:25.
  • Krunks M, Mellikov E. Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films. 1995;270:33–36. doi: 10.1016/0040-6090(95)06893-7
  • Shariffudin SS, Khalid SS, Sahat NM, et al. Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating. IOP Conf Ser: Mater Sci Eng. 2015;99:012007. doi: 10.1088/1757-899X/99/1/012007
  • Jeyaprakash BG, Ashok Kumar R, Kesavan K, et al. Structural and Optical Characterization of Spray Deposited SnS Thin Film. J Am Sci. 2010;6(3):22–26.
  • Jundale D, Joshi P, Sen S, et al. Nanocrystalline CuO thin films: synthesis, microstructural and optoelectronic properties. J Mater Sci: Mater Electron. 2012;23:1492–1499.
  • Sanjay A, Gawali CH. Structural and optical properties of nanocrystalline CdSe and Al:CdSe thin films for photoelectrochemical application. Mater Chem Phys. 2011;129:751–755. doi: 10.1016/j.matchemphys.2011.04.059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.