312
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Optimisation of fluorapatite coating synthesis applied to a biodegradable substrate

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 255-265 | Received 28 Mar 2018, Accepted 07 Jun 2018, Published online: 05 Jul 2018

References

  • Wang M, Qian R, Bao M, et al. Raman, FT-IR and XRD study of bovine bone mineral and carbonated apatites with different carbonate levels. Mater Lett. 2018;210:203–206. doi: 10.1016/j.matlet.2017.09.023
  • Yang D, Zhao Z, Bai F, et al. Promoting cell migration in tissue engineering scaffolds with graded channels. Adv Healthcare Mater. 2017;6(18):1–2. doi: 10.1002/adhm.201700472
  • Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–554. doi: 10.1016/j.tibtech.2012.07.005
  • Umeda H, Mano T, Harada K, et al. Appearance of cell-adhesion factor in osteoblast proliferation and differentiation of apatite coating titanium by blast coating method. J Mater Sci: Mater Med. 2017;28(8):112.
  • Leilei Z, Shaoxian L, Hejun L, et al. Hydroxyapatite coating on C/C with graphene oxide interlayer. Surf Eng. 2017;10: 1–8.
  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14(1):15–56. doi: 10.1166/jnn.2014.9127
  • Razavi M, Fathi M, Savabi O, et al. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique. Surf Eng. 2014;30(8):545–551. doi: 10.1179/1743294414Y.0000000284
  • Yazdimamaghani M, Razavi M, Vashaee D, et al. Microstructural and mechanical study of PCL coated Mg scaffolds. Surf Eng. 2014;30(12):920–926. doi: 10.1179/1743294414Y.0000000307
  • Sola A, Bellucci D, Cannillo V, et al. Bioactive glass coatings: a review. Surf Eng. 2011;27(8):560–572. doi: 10.1179/1743294410Y.0000000008
  • Hermawan H, Purnama A, Dube D, et al. Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomaterialia. 2010;6(5):1852–1860. doi: 10.1016/j.actbio.2009.11.025
  • Schinhammer M, Gerber I, Hänzi AC, et al. On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng: C. 2013;33(2):782–789. doi: 10.1016/j.msec.2012.11.002
  • Peuster M, Wohlsein P, Brügmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal – results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001;86(5):563–569. doi: 10.1136/heart.86.5.563
  • Kim H-W, Kim H-E, Knowles JC. Fluor-hydroxyapatite sol–gel coating on titanium substrate for hard tissue implants. Biomaterials. 2004;25(17):3351–3358. doi: 10.1016/j.biomaterials.2003.09.104
  • Cheng K, Han G, Weng W, et al. Sol–gel derived fluoridated hydroxyapatite films. Mater Res Bull. 2003;38(1):89–97. doi: 10.1016/S0025-5408(02)00985-6
  • Wang Y, Zhang S, Zeng X, et al. Osteoblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomater. 2007;3(2):191–197. doi: 10.1016/j.actbio.2006.10.002
  • Weng W, Zhang S, Cheng K, et al. Sol–gel preparation of bioactive apatite films. Surf Coat Technol. 2003;167(2–3):292–296. doi: 10.1016/S0257-8972(02)00922-2
  • Tredwin CJ, Georgiou G, Kim H-W, et al. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: bonding to titanium and scanning electron microscopy. Dent Mater. 2013;29(5):521–529. doi: 10.1016/j.dental.2013.02.002
  • Tredwin CJ, Young AM, Georgiou G, et al. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method. optimisation, characterisation and rheology. Dent Mater. 2013;29(2):166–173. doi: 10.1016/j.dental.2012.11.008
  • Kim HW, Kim HE, Knowles JC. Sol-gel apatite films on titanium implant for hard tissue regeneration. Key engineering materials. 2004;254:423–426.
  • Kim HW, Kim HE, Knowles JC. Improvement of hydroxyapatite sol–gel coating on titanium with ammonium hydroxide addition. J Am Ceram Soc. 2005;88(1):154–159. doi: 10.1111/j.1551-2916.2004.00030.x
  • Kim H-W, Kong Y-M, Bae C-J, et al. Sol–gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials. 2004;25(15):2919–2926. doi: 10.1016/j.biomaterials.2003.09.074
  • Romonţi DC, Iskra J, Bele M, et al. Elaboration and characterization of fluorohydroxyapatite and fluoroapatite sol-gel coatings on CoCrMo alloy. J Alloy Compd. 2016;665:355–364. doi: 10.1016/j.jallcom.2016.01.072
  • Liu D-M, Troczynski T, Tseng WJ. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials. 2001;22(13):1721–1730. doi: 10.1016/S0142-9612(00)00332-X
  • Kim HW, Knowles JC, Kim HE. Development of hydroxyapatite bone scaffold for controlled drug release via poly (ϵ-caprolactone) and hydroxyapatite hybrid coatings. J Biomed Mater Res Part B: Appl Biomater. 2004;70(2):240–249. doi: 10.1002/jbm.b.30038
  • Kim H-W, Koh Y-H, Li L-H, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials. 2004;25(13):2533–2538. doi: 10.1016/j.biomaterials.2003.09.041
  • Sun RX, Liu P, Zhang RX, et al. Hydrothermal synthesis of microstructured fluoridated hydroxyapatite coating on magnesium alloy. Surf Eng. 2016;32(11):879–884. doi: 10.1080/02670844.2016.1194511
  • Tredwin CJ. Sol-gel derived hydroxyapatite, fluorhydroxyapatite and fluorapatite coatings for titanium implants [Doctoral thesis]. London: University College London; 2009.
  • Tredwin CJ, Young AM, Neel EAA, et al. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallisation. J Mater Sci: Mater Med. 2014;25(1):47–53.
  • Ulum M, Arafat A, Noviana D, et al. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Mater Sci Eng: C. 2014;36:336–344. doi: 10.1016/j.msec.2013.12.022
  • Thair L, Ismaeel T, Ahmed B, et al. Development of apatite coatings on Ti–6Al–7Nb dental implants by biomimetic process and EPD: in vivo studies. Sur Eng. 2011;27(1):11–18. doi: 10.1179/174329409X439023
  • Panda R, Hsieh M, Chung R, et al. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids. 2003;64(2):193–199. doi: 10.1016/S0022-3697(02)00257-3
  • Daculsi G, LeGeros RZ, Heughebaert M, et al. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcified Tissue Int. 1990;46(1):20–27. doi: 10.1007/BF02555820
  • MerrHews A-n, Israel J. The decarbonation of carbonate-fluorapatite (francolite). Am Mineral. 1977;62:565–573.
  • Gineste L, Gineste M, Ranz X, et al. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J Biomed Mater Res Part A. 1999;48(3):224–234. doi: 10.1002/(SICI)1097-4636(1999)48:3<224::AID-JBM5>3.0.CO;2-A
  • Chakraborty R, Seesala VS, Sen M, et al. MWCNT reinforced bone like calcium phosphate – hydroxyapatite composite coating developed through pulsed electrodeposition with varying amount of apatite phase and crystallinity to promote superior osteoconduction, cytocompatibility and corrosion protection performance compared to bare metallic implant surface. Surf Coat Technol. 2017;325:496–514. doi: 10.1016/j.surfcoat.2017.06.073
  • Bucher W, Madrid C. Dictionary of building preservation. New York (NY): Preservation Press, J. Wiley; 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.