288
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic behaviour of miniature laser textured skis

ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 1250-1260 | Received 18 Dec 2017, Accepted 07 Aug 2018, Published online: 03 Sep 2018

References

  • Andersson LO, Golander CG, Persson S. Ice adhesion to rubber materials. J Adhes Sci Technol. 1994;8:117–132. doi: 10.1163/156856194X00104
  • Frankenstein S, Tuthill AM. Ice adhesion to locks and dams: past work; future directions? J Cold Reg Eng. 2002;16:83–96. doi: 10.1061/(ASCE)0887-381X(2002)16:2(83)
  • Laforte JL, Allaire MA, Laflamme J. State-of-the-art on power line de-icing. Atmos Res. 1998;46:143–158. doi: 10.1016/S0169-8095(97)00057-4
  • Croutch VK, Hartley RA. Adhesion of ice to coatings and the performance of ice release coatings. J Coat Technol. 1992;64:41–52.
  • Golovin K, Kobaku SPR, Lee DH, et al. Designing durable icephobic surfaces. Sci Adv. 2016;2:e1501496. doi: 10.1126/sciadv.1501496
  • Mazzola L. Aeronautical livery coating with icephobic property. Surf Eng. 2016;32(10):733–744. 2016. doi: 10.1080/02670844.2015.1121319
  • Bowden F, Hughes T. The mechanism of sliding on ice and snow. Proc R Soc London Ser A. 1939;172:280–298. doi: 10.1098/rspa.1939.0104
  • Colbeck SC. A review of the friction of snow skis. J Sports Sci. 1994;3(12):285–295. doi: 10.1080/02640419408732174
  • Kuzmin L. Interfacial kinetic ski friction [doctoral thesis]. Mid Sweden University; 2010.
  • De Koning G, De Groot GJ, Schenau JVI. Ice friction during speed skating. J Biomech. 1992;25(6):565–571. doi: 10.1016/0021-9290(92)90099-M
  • Slotfeldt-Ellingsen D, Torgersen L. Glide abilities of polyethylene ski base. Oslo: SINTEF; 1982. 62.
  • Faraday M. On regelation, and on the conservation of force. Philosophical Magazine. Fourth Ser. 1859;17(I 13):162–69.
  • Fierz C, Armstrong R L, Durand Y, et al. The international classification for seasonal snow on the ground. IHP-VII Tech Doc Hydrol. 2009;83(1):1–80.
  • Kietzig AM, Hatzikiriakos SG, Englezos P. Physics of ice friction. J Appl Phys. 2010;107:081101. doi: 10.1063/1.3340792
  • Buhl D, Fauve MRH. The kinetic friction of polyethylene on snow: the influence of the snow temperature and the load. Cold Reg Sci Technol. 2001;33(2–3):133–140. doi: 10.1016/S0165-232X(01)00034-9
  • Bowden FP. Friction on snow and ice. Proc R Soc Lond A. 1953;217:462–478. doi: 10.1098/rspa.1953.0074
  • Bäurle L, Szabò D, Fauve M, et al. Sliding friction of polyethilene on ice: tribometer measurements. Tribol Lett. 2006;24:77–84. doi: 10.1007/s11249-006-9147-z
  • Rohm SHM, Knoflach C, Van Putten J, et al. Friction between steel and snow in dependence of the steel roughness. Tribol Lett. 2015;59:27. doi: 10.1007/s11249-015-0554-x
  • Liang H, Martin JM, Mogne TL. Experimental investigation of friction in low-temperature ice. Acta Mater. 2003;51(9):2639–2646. doi: 10.1016/S1359-6454(03)00061-2
  • Akkok M, Ettles CMM, Calabrese SJ. Parameters affecting the kinetic friction on ice. J Tribol. 1987;109(3):552–561. doi: 10.1115/1.3261503
  • Bäurle L, Kaempfer U, Szabó D, et al. Sliding friction of polyethylene on snow and ice: Contact area and modelling. Cold Reg Sci Technol. 2007;47:276–289. doi: 10.1016/j.coldregions.2006.10.005
  • Evans DCB, Nye JF, Cheeseman KJ. The kinetic friction of ice. Proc R Soc Lond. 1976;A 347:493–512.
  • Makkonen M, Tikanmaki MM. Modeling the friction of ice. Cold Reg Sci Technol. 2014;102:84–93. doi: 10.1016/j.coldregions.2014.03.002
  • Itagaki K, Lemieux GE, Huber NP. Preliminary study of friction between ice and sled runners. J Phys Colloques. 1987;48:297–301.
  • Roberts AD, Richardson JC. Interface study of rubber-ice friction. Wear. 1981;67(1):55–69. doi: 10.1016/0043-1648(81)90075-2
  • Kuroiwa D. The kinetic friction on snow and ice. J Glaciol. 1977;19:141–152. doi: 10.1017/S0022143000029233
  • Calabrese SJ, Buxton R, Marsh G. Frictional characteristics of materials sliding against ice. Lubr Eng. 1980;36(5):283–289.
  • Albracht F, Reichel S, Winkler V, et al. On the influences of friction on ice. Materwiss und Werksttech. 2004;35(10–11):620–625. doi: 10.1002/mawe.200400822
  • Montagnat M, Schulson EM. On friction and surface cracking during sliding of ice on ice. J Glaciol. 2003;49(166):391–396. doi: 10.3189/172756503781830647
  • Oksanen P, Keinonen J. The mechanism of friction of ice. Wear. 1982;78(3):315–324. doi: 10.1016/0043-1648(82)90242-3
  • Jones SJ, Kitagawa H, Izumiyama K, et al. Friction of melting ice. Ann Glaciol. 1994;19:7–12. doi: 10.3189/1994AoG19-1-7-12
  • Marmo BA, Farrow IS, Buckingham MP, et al. Frictional heat. Proc Inst Mech Eng Part L. 2006;220(4):189–197.
  • Ducret S, Zahouani H, Midol A, et al. Friction and abrasive wear of UHMWPE sliding on ice. Wear. 2005;258:26–31. doi: 10.1016/j.wear.2004.09.026
  • Kietzig AM, Hatzikiriakos SG, Englezos P. Ice friction: the effects of surface roughness, structure and hydrophobicity. J Appl Phys. 2009;106:024303. doi: 10.1063/1.3173346
  • Kietzig AM, Hatzikiriakos SG, Englezos P. Patterned superhydrophobic metallic surfaces. Langmuir. 2009;25(8):4821–4827. doi: 10.1021/la8037582
  • Luo Y, Zhang D, Xu X, et al. Precise cutting microstructured superhydrophobic surface. Surf Eng. 2016;32(2):119–124. doi: 10.1179/1743294415Y.0000000102
  • Cohen N, Dotan A, Dodiuk H, et al. Superhydrophobic coatings and their durability. Mater Manuf Process. 2016;31(9):1143–1155. doi: 10.1080/10426914.2015.1090600
  • Khagendra T, Joshi B, Amanov A, et al. A Study on the effect of laser surface texturing on friction and wear behavior of graphite cast iron. J Tribol. 2016;I(138):011601.
  • Shum PW, Zhou ZF, Li KY. To increase the hydrophobicity and wear resistance of diamond-like carbon coatings by surface texturing using laser ablation process. Thin solid films. 2013;544:472–476. doi: 10.1016/j.tsf.2013.02.075
  • Braun D, Greinern C, Schneider J, et al. Efficiency of laser surface texturing in the reduction of friction under mixed lubrication. Tribol Int. 2014;77:142–147. doi: 10.1016/j.triboint.2014.04.012
  • Wang X, Kato K, Koshi A, et al. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribol Int. 2001;34:703–711. doi: 10.1016/S0301-679X(01)00063-9
  • Vandoni L, Demir AG, Previtali B, et al. Wear behavior of fiber laser textured TiN coatings in a heavy loaded sliding regime. Materials. 2012;5(11):2360–2382. doi: 10.3390/ma5112360
  • Pawlak Z, Urbaniak W, Oloyede A. The relationship between friction and wettability in aqueous environment. Wear. 2011;271:1745–1749. doi: 10.1016/j.wear.2010.12.084
  • Chen YF, Chen YP, Zhang CB, et al. Influence of rough surface topography on wettability. J Eng Thermophys-Rus. 2011;32(7):1188–1190.
  • Groten J, Rühe J. Surfaces with combined microscale and nanoscale structures: a route to mechanically stable superhydrophobic surfaces? Langmuir. 2013;29(11):3765–3772. doi: 10.1021/la304641q
  • Öner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 2000;16(20):7777–7782. doi: 10.1021/la000598o
  • Jopp J, Grüll H, Yerushalmi-Rozen R. Wetting behavior of water droplets on hydrophobic microtextures of comparable size. Langmuir. 2004;20:10015–10019. doi: 10.1021/la0497651
  • Luo BH, Shum PW, Zhou ZF, et al. Surface geometrical model modification and contact angle prediction for the laser patterned steel surface. Surf Coat Tech. 2010;205:2597–2604. doi: 10.1016/j.surfcoat.2010.10.003
  • Lawrence J, Li L. Wettability characteristics of polyethylene modified with CO2, Nd:YAG, excimer and high-power diode lasers. Proc Instn Mech Engrs. 2015;215(Part B):1735–1744.
  • Semaltianos NG, Perrie W, French P, et al. Femtosecond laser surface texturing of a nickel-based superalloy. Appl Surf Sci. 2008;255:2796–2802. doi: 10.1016/j.apsusc.2008.08.043
  • Ta DV, Dunn A, Wasley TJ, et al. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl Surf Sci. 2015;357:248–254. doi: 10.1016/j.apsusc.2015.09.027
  • Wang B, Wang X, Zheng H, et al. Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation. Nanomaterials. 2015;5:1442–1453. doi: 10.3390/nano5031442
  • Wang YQ, Yang HF, Hao JB, et al. Experimental research on the fabrication and wettability of micro- and nano-scale surface textures produced on stainless steel using an ultrafast laser. Laser Eng. 2011;21:241–254.
  • Yang MZHF, Dai BJLJ, Cai ELZL. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser. Appl Phys A. 2009;94(3):571–576. doi: 10.1007/s00339-008-4920-5
  • Demir AG, Furlan V, Lecis N, et al. Laser surface structuring of AZ31 Mg alloy for controlled wettability. Biointerphases. 2014;9(2):0290091.
  • Furlan V, Demir AG, Previtali B. Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling. Opt Laser Technol. 2015;75:164–172. doi: 10.1016/j.optlastec.2015.06.030
  • Demir AG, Taketa TB, Tolouei R, et al. Laser surface structuring affects polymer deposition, coating homogeneity, and degradation rate of Mg alloys. Materials Letters. 2015;160:359–362. doi: 10.1016/j.matlet.2015.07.159
  • Demir AG, Previtali B, Lecis N. Development of laser dimpling strategies on TiN coatings for tribological applications with a highly energetic Q-switched fibre laser. Opt Laser Technol. 2013;54:53–61. doi: 10.1016/j.optlastec.2013.05.007
  • Yuan Y, Lee TR. Contact angle and wetting properties. In: G Bracco, B Holst, editors. Surface science techniques. Berlin: Springer; 2013. p. I–34.
  • de Lara LR, Jagdheesh R, Ocaña JL. Corrosion resistance of laser patterned ultrahydrophobic aluminium surface. Mater Lett. 2016;184:100–103. doi: 10.1016/j.matlet.2016.08.022
  • Jagdheesh R, García-Ballesteros JJ, Ocaña JL. One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation. Appl Surf Sci. 2016;374:2–11. doi: 10.1016/j.apsusc.2015.06.104
  • Kuzmin L. Interfacial kinetic ski friction [thesis for the degree of doctoral of philosophy]. Mid Sweden University; 2010.
  • Mannion PT, Magee J, Coyne E, et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci. 2004;233:275–287. doi: 10.1016/j.apsusc.2004.03.229
  • Maressa P, Anodio L, Bernasconi A, et al. Effect of surface texture on the adhesion performance of laser treated Ti6Al4 V alloy. J Adhesion. 2015;91(7):518–537. doi: 10.1080/00218464.2014.933809

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.