340
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Cr–Ag coatings: synthesis, microstructure and antimicrobial properties

ORCID Icon, , ORCID Icon, ORCID Icon, , , , & show all
Pages 596-603 | Received 01 Jun 2018, Accepted 07 Oct 2018, Published online: 31 Oct 2018

References

  • Point prevalence survey of healthcare-associated infections and antimicrobial use in European hospitals 2011–2012. Sweden: European Centre for Disease Prevention and Control (ECDC); 2013.
  • Report on the burden of endemic health care-associated infection worldwide. Geneva: World Health Organization; 2011.
  • Vreuls C, Zocchi G, Garitte G, et al. Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications. Biofouling. 2010;26(6):645–656. doi: 10.1080/08927014.2010.506678
  • Konradi R, Acikgoz C, Textor M. Polyoxazolines for nonfouling surface coatings—a direct comparison to the gold standard PEG. Macromol Rapid Commun. 2012;33(19):1663–1676. doi: 10.1002/marc.201200422
  • Wang Q, Uzunoglu E, Wu Y, et al. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces. ACS Appl Mater Interfaces. 2012;4(5):2498–2506. doi: 10.1021/am300197m
  • Carvalho I, Henriques M, Oliveira JC, et al. Influence of surface features on the adhesion of Staphylococcus epidermidis to Ag–TiCN thin films. Sci Technol Adv Mater. 2013;14. doi: 10.1088/1468-6996/14/3/035009
  • Veiga AS, Sinthuvanich C, Gaspar D, et al. Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials. 2012;33(35):8907–8916. doi: 10.1016/j.biomaterials.2012.08.046
  • Mohamed NA, Abd El-Ghany NA. Preparation and antimicrobial activity of some carboxymethyl chitosan acyl thiourea derivatives. Int J Biol Macromol. 2012;50(5):1280–1285. doi: 10.1016/j.ijbiomac.2012.03.011
  • Sun B, Slomberg DL, Chudasama SL, et al. Nitric oxide-releasing dendrimers as antibacterial agents. Biomacromolecules. 2012;13(10):3343–3354. doi: 10.1021/bm301109c
  • Popelka A, Novák I, Lehocký M, et al. Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules. 2012;17(1):762–785. doi: 10.3390/molecules17010762
  • Dunnill CW, Parkin IP. Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments. Dalton Trans. 2011;40(8):1635–1640. doi: 10.1039/C0DT00494D
  • Kim BH, Seo HS, Jung SC, et al. Study in bactericidal properties of chlorhexidine grafting on the modified titanium. J Nanosci Nanotechnol. 2011;11(2):1530–1533. doi: 10.1166/jnn.2011.3314
  • Vukčević M, Kalijadis A, Dimitrijević-Branković S, et al. Surface characteristics and antibacterial activity of a silver-doped carbon monolith. Sci Technol Adv Mater. 2008;9. doi: 10.1088/1468-6996/9/1/015006
  • Wang J, Zhu Y, Bawa HK, et al. Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl Mater Interfaces. 2011;3:67–73. doi: 10.1021/am100862h
  • Dutta S, Shome A, Kar T, et al. Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property. Langmuir. 2011;27(8):5000–5008. doi: 10.1021/la104903z
  • Grandi S, Cassinelli V, Bini M, et al. Bone reconstruction: Au nanocomposite bioglasses with antibacterial properties. Int J Artif Organs. 2011;34(9):920–928. doi: 10.5301/ijao.5000059
  • Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34(34):8533–8554. doi: 10.1016/j.biomaterials.2013.07.089
  • Brackman G, Cos P, Maes L, et al. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2011;55(6):2655–2661. doi: 10.1128/AAC.00045-11
  • Hochbaum AI, Kolodkin-Gal I, Foulston L, et al. Inhibitory effects of d-amino acids on Staphylococcus aureus biofilm development. J Bacteriol. 2011;193(20):5616–5622. doi: 10.1128/JB.05534-11
  • Alexander JW. History of the medical use of silver. Surg Infect. 2009;10(3):289–292. doi: 10.1089/sur.2008.9941
  • Peran J, Rai SE, Kosalec I, et al. Antimicrobial effectiveness of cellulose based fabrics treated with silver nitrate solution using plasma processes. Tekstilec. 2017;60(4):247–253. doi: 10.14502/Tekstilec2017.60.247-253
  • Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers. Environ Sci Technol. 2011;45(4):1177–1183. doi: 10.1021/es103316q
  • Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–1551. doi: 10.1007/s11051-010-9900-y
  • Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52(6):1636–1653. doi: 10.1002/anie.201205923
  • Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10(3):339–354. doi: 10.1016/j.nantod.2015.04.002
  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13-14):1803–1815. doi: 10.1016/j.addr.2013.07.011
  • Haynes WM. CRC handbook of chemistry and physics. 97th ed. Boca Raton: CRC Press; 2016.
  • Mahltig B, Fiedler D, Simon P. Silver-containing sol-gel coatings on textiles: antimicrobial effect as a function of curing treatment. Text Res J. 2011;102(9):739–745.
  • Meininger M, Meininger S, Groll J, et al. Silver and copper addition enhances the antimicrobial activity of calcium hydroxide coatings on titanium. J Mater Sci Mater Med. 2018;29. doi: 10.1007/s10856-018-6065-1
  • Tran N, Kelley MN, Tran PA, et al. Silver doped titanium oxide-PDMS hybrid coating inhibits Staphylococcus aureus and Staphylococcus epidermidis growth on PEEK. Mater Sci Eng C Mater Biol Appl. 2015;49:201–209. doi: 10.1016/j.msec.2014.12.072
  • Shende P, Oza B, Gaud RS. Silver-doped titanium dioxide nanoparticles encapsulated in chitosan-PVA film for synergistic antimicrobial activity. Int J Polym Mater. 2018;67:1080–1086. doi: 10.1080/00914037.2017.1417290
  • Ibanescu M, Musat V, Textor T, et al. Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. J Alloys Compd. 2014;610:244–249. doi: 10.1016/j.jallcom.2014.04.138
  • Hans M, Tamara JC, Mathews S, et al. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity. Appl Surf Sci. 2014;320:195–199. doi: 10.1016/j.apsusc.2014.09.069
  • Cong F, Xuefei Z, Savino K, et al. Antimicrobial silver-hydroxyapatite composite coatings through two-stage electrochemical synthesis. Surf Coat Technol. 2016;301:13–19. doi: 10.1016/j.surfcoat.2016.03.010
  • NIST X-ray photoelectron spectroscopy database, NIST standard reference database number 20 [Internet]. National Institute of Standards and Technology; 2012. [cited 2018 Mar 1]. Available from: https://srdata.nist.gov/xps/
  • NIST chemistry webbook, NIST standard reference database number 69 [Internet]. National Institute of Standards and Technology; 2005 [cited 2018 Mar 1].
  • Franke P, Neuschütz D. Ag-Cr (silver–chromium), binary systems. Part 5: binary systems supplement 1: phase diagrams, phase transition data, integral and partial quantities of alloys. Berlin: Springer; 2007.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583. doi: 10.1557/JMR.1992.1564
  • Pharr GM, Oliver WC. Measurement of thin-film mechanical-properties using nanoindentation. MRS Bull. 1992;17(7):28–33. doi: 10.1557/S0883769400041634
  • Tsui TY, Pharr GM, Oliver WC, et al. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Materials Research Soc. 1995;383:447–452. doi: 10.1557/PROC-383-447
  • JIS Z 2801. (2010). Antibacterial products – test for antibacterial activity and efficacy.
  • Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2(5):395–401. doi: 10.4161/viru.2.5.17035
  • Knetsch MLW, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel). 2011;3(1):340–366. doi: 10.3390/polym3010340
  • Lara HH, Ayala-Núñez NV, et al. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol. 2010;26(4):615–621. doi: 10.1007/s11274-009-0211-3
  • Huang L, Dai T, Xuan Y, et al. Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother. 2011;55(7):3432–3438. doi: 10.1128/AAC.01803-10
  • Randall CP, Oyama LB, Bostock JM, et al. The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother. 2013;68(1):131–138. doi: 10.1093/jac/dks372
  • Arakha M, Saleem M, Mallick BC, et al. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep. 2015;5.
  • Cabeen MT, Jacobs-Wagner C. Bacterial cell shape. Nat Rev Microbiol. 2005;3(8):601–610. doi: 10.1038/nrmicro1205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.