227
Views
11
CrossRef citations to date
0
Altmetric
Articles

TiO2 coating prepared by mechanical alloying treatment for photocatalytic degradation

, , , & ORCID Icon
Pages 927-932 | Received 24 Aug 2018, Accepted 24 Nov 2018, Published online: 10 Dec 2018

References

  • Bagheri S, Termehyousefi A, Do TO. Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catal Sci Technol. 2017;7:4548–4569. doi: 10.1039/C7CY00468K
  • Gorduk S, Avciata O, Avciata U. Photocatalytic degradation of methylene blue under visible light irradiation by non-peripherally tetra substituted phthalocyanine-TiO2 nanocomposites. Inorg Chim Acta. 2018;471:137–147. doi: 10.1016/j.ica.2017.11.004
  • Abdullahi MA, Amir M, Asiri SM, et al. Photocatalytic degradation of Azo dyes and organic contaminants in wastewater using magnetically recyclable Fe3O4@UA-Cu nano-catalyst. Catal Lett. 2018;148(4):1130–1141. doi: 10.1007/s10562-018-2322-7
  • Yamaguchi Y, Usuki S, Yamatoya K, et al. Efficient photocatalytic degradation of gaseous acetaldehyde over ground Rh–Sb co-doped SrTiO3 under visible light irradiation. RSC Adv. 2018;8(10):5331–5337. doi: 10.1039/C7RA11337D
  • Dlugosz M, Zmudzki P, Kwiecien A, et al. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. J Hazard Mater. 2015;298:146–153. doi: 10.1016/j.jhazmat.2015.05.016
  • Miao J, Zhang R, Zhang L. Photocatalytic degradations of three dyes with different chemical structures using ball-milled TiO2. Mater Res Bull. 2018;97:109–114. doi: 10.1016/j.materresbull.2017.08.032
  • Zhu X, Liang X, Wang P, et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: insight into the role of Ag particles. Appl Surf Sci. 2018;456(31):493–500. doi: 10.1016/j.apsusc.2018.06.127
  • Subash B, Krishnakumar B, Swaminathan M, et al. Enhanced photocatalytic performance of WO3, loaded Ag-ZnO for acid black 1 degradation by UV-A light. J Mol Catal – Chem. 2013;366(1):54–63. doi: 10.1016/j.molcata.2012.09.008
  • Lin J, Luo Z, Liu J, et al. Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Mater Sci Semicond Proc. 2018;87:24–31. doi: 10.1016/j.mssp.2018.07.003
  • Feng Q, Li S, Ma W, et al. Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation. J Alloys Compd. 2018;737:197–206. doi: 10.1016/j.jallcom.2017.12.070
  • Zhang YY, Jiang HL, Huang JY, et al. Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 2015;5:79479–79510. doi: 10.1039/C5RA11298B
  • Deebasree JP, Maheskumar V, Vidhya B. Investigation of the visible light photocatalytic activity of BiVO4, prepared by sol gel method assisted by ultrasonication. Ultrason Sonochem. 2018;45:123–132. doi: 10.1016/j.ultsonch.2018.02.002
  • Carcia PF, Mclean RS, Reilly MH, et al. Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering. Appl Phys Lett. 2003;82(7):1117–1119. doi: 10.1063/1.1553997
  • Kang HW, Lee HW, Sung HJ. Direct patterning of ZnO thin film transistor using physical vapor jet printing. Mater Lett. 2016;163:165–170. doi: 10.1016/j.matlet.2015.10.069
  • He C, Bu X, Yang S, et al. Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance. Appl Surf Sci. 2018;436:373–381. doi: 10.1016/j.apsusc.2017.12.063
  • Shahzad N, Chen FY, Khan M. Photovoltaic characteristics of titania photoanodes modified with silver nanoparticles by pulsed laser deposition. Mater Lett. 2016;163:266–269. doi: 10.1016/j.matlet.2015.10.096
  • Sun J, Yao QT, Tong WP, et al. Simultaneous nitriding for two components of Ti/steel clad sheet. Surf Eng. 2015;31(8):605–611. doi: 10.1179/1743294415Y.0000000072
  • Yao QT, Sun J, Zhang GL, et al. Enhanced toughness of nitrided layers formed on Ti-6Al-4V alloy via surface mechanical attrition pre-treatment. Vacuum. 2017;142:45–51. doi: 10.1016/j.vacuum.2017.05.004
  • Chen XB, Liu L, Yu PY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011;331:746–750. doi: 10.1126/science.1200448
  • Xiong LB, Li JL, Yang B, et al. Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater. 2012;2012:(5–8):9.
  • Tong WP, Tao NR, Wang ZB, et al. Nitriding iron at lower temperatures. Science. 2003;299(5607):686–688. doi: 10.1126/science.1080216
  • Ma E, Atzmon M. Phase transformations induced by mechanical alloying in binary systems. Mater Chem Phys. 1995;39(39):249–267. doi: 10.1016/0254-0584(94)01446-N
  • Manna I, Chattopadhyay PP, Nandi P, et al. Formation of face-centered-cubic titanium by mechanical attrition. J Appl Phys. 2003;93(3):1520–1524. doi: 10.1063/1.1530718
  • Yao QT, Sun J, Zhang GL, et al. Thermal stability of nanocrystalline BCC-Ti formed by phase transformation during surface mechanical attrition treatment. Nano. 2017;12(9):1750113. doi: 10.1142/S1793292017501132
  • Liu Y, Tian LH, Tan XY, et al. Synthesis, Properties, and applications of black titanium dioxide nanomaterials. Sci Bull. 2017;62:431–441. doi: 10.1016/j.scib.2017.01.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.