98
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Photodecomposition of methylene blue over Dy3+ impregnated MAO TiO2 films

, , &
Pages 635-642 | Received 21 Aug 2018, Accepted 07 Dec 2018, Published online: 23 Dec 2018

References

  • Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigm. 2003;56:239–249. doi: 10.1016/S0143-7208(02)00159-6
  • Rojviroon T, Rojviroon O, Sirivithayapakorn S. Photocatalytic decolourisation of dyes using TiO2 thin film photocatalysts. Sur Eng. 2016;32:562–569. doi: 10.1179/1743294415Y.0000000096
  • Janus M, Kusiak E, Morawski AW. Carbon Modified TiO2 photocatalyst with enhanced Adsorptivity for dyes from water. Catal Lett. 2009;131:506–511. doi: 10.1007/s10562-009-9932-z
  • Lu XP, Schieda M, Blawert C, et al. Formation of photocatalytic plasma electrolytic oxidation coatings on magnesium alloy by incorporation of TiO 2 particles. Sur Coat Technol. 2016;307:287–291. doi: 10.1016/j.surfcoat.2016.09.006
  • Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mat Sci Eng C. 2007;27:540–545. doi: 10.1016/j.msec.2006.05.021
  • Rana S, Srivastava RS, Sorensson MM, et al. Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system. Mat Sci Eng B. 2005;119:144–151. doi: 10.1016/j.mseb.2005.02.043
  • Rana S, Rawat J, Misra RDK. Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomater. 2005;1:691–703. doi: 10.1016/j.actbio.2005.07.007
  • Rawat J, Rana S, Sorensson MM, et al. Anti-microbial activity of doped anatase titania coated nickel ferrite composite nanoparticles. Mat Sci Technol. 2007;23:97–102. doi: 10.1179/174328407X158488
  • Rana S, Gallo A, Srivastava RS, et al. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: Functionalization, conjugation and drug release kinetics. Acta Biomater. 2007;3:233–242. doi: 10.1016/j.actbio.2006.10.006
  • Maness PC, Smolinski S, Blake DM, et al. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl Environ Microbiol. 1999;65:4094–4098.
  • Horikoshi S, Hidaka H, Serpone N. Hydroxyl radicals in microwave photocatalysis. enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chem Phys Lett. 2003;376:475–480. doi: 10.1016/S0009-2614(03)01007-8
  • Ohno T, Tokieda K, Higashida S, et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl Catal A Gen. 2003;244:383–391. doi: 10.1016/S0926-860X(02)00610-5
  • Akatsu T, Yamada Y, Hoshikawa Y, et al. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation. Mater Sci Eng C. 2013;33:4871–4875. doi: 10.1016/j.msec.2013.08.003
  • Stojadinović S, Radić N, Tadić N, et al. Influence of iron doping on photocatalytic activity of TiO2 coatings formed on titanium by plasma electrolytic oxidation. Sci Mater Electron. 2018;29:9427–9434. doi: 10.1007/s10854-018-8975-6
  • Li H, Hao YB, Lu HQ, et al. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method. Appl Sur Sci. 2015;344:112–118. doi: 10.1016/j.apsusc.2015.03.071
  • Mutuma BK, Shao GN, Kim WD, et al. Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. Interf Sci. 2015;442:1–7. doi: 10.1016/j.jcis.2014.11.060
  • Zhao H, Bennici S, Shen J, et al. The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42− catalysts. Appl Catal A Gen. 2009;356:121–128. doi: 10.1016/j.apcata.2008.12.037
  • Gao YP, Wang LB, Zhou AG, et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater Lett. 2015;150:62–64. doi: 10.1016/j.matlet.2015.02.135
  • Kuroda K, Okido M. New approach for controlling osteoconductivity of valve metals based on TiO2 coatings on Ti substrates. Mater Technol. 2015;30:B13–B20. doi: 10.1179/1753555714Y.0000000221
  • Zhou M, Roualdès S, Zhao J, et al. Nanocrystalline TiO 2 thin film prepared by low-temperature plasma-enhanced chemical vapor deposition for photocatalytic applications. Thin Solid Films. 2015;589:770–777. doi: 10.1016/j.tsf.2015.07.007
  • Rico V, Romero P, Hueso JL, et al. Wetting angles and photocatalytic activities of illuminated TiO2 thin films. Catal Today. 2009;143:347–354. doi: 10.1016/j.cattod.2008.09.037
  • Lee SH, Yamasue E, Okumura H, et al. Effect of oxygen and nitrogen concentration of nitrogen doped TiOx film as photocatalyst prepared by reactive sputtering. Appl Catal A Gen. 2009;371:179–190. doi: 10.1016/j.apcata.2009.10.011
  • Seong SG, Kim EJ, Kim YS, et al. Influence of deposition atmosphere on photocatalytic activity of TiO2/SiOx double-layers prepared by RF magnetron sputtering. Appl Surf Sci. 2009;256:1–5. doi: 10.1016/j.apsusc.2009.05.059
  • Abou-Helal MO, Seeber WT. Preparation of TiO2 thin films by spray pyrolysis to be used as a photocatalyst. Appl Surf Sci. 2002;195:53–62. doi: 10.1016/S0169-4332(02)00533-0
  • Acik IO, Junolainen A, Mikli V, et al. Growth of ultra-thin TiO2 films by spray pyrolysis on different substrates. Appl Surf Sci. 2009;256:1391–1394. doi: 10.1016/j.apsusc.2009.08.101
  • Sridhar S, Arunnellaiappan T, Rameshbabu N, et al. Solar photocatalytic activity of nitrogen doped TiO2 coating by micro-arc oxidation. Surf Eng. 2017;33:779–786. doi: 10.1080/02670844.2016.1259090
  • Wang M, Guo S, Wang YL, et al. Facile fix of porous composite titania photocatalytic film by PEO. Surf Eng. 2016;32:423–427. doi: 10.1179/1743294414Y.0000000345
  • Kim YS, Shin KR, Kim GW, et al. Photocatalytic activity of TiO2 film containing Fe2O3via plasma electrolytic oxidation. Surf Eng. 2016;32:443–447. doi: 10.1179/1743294415Y.0000000077
  • Xiang N, Song RG, Xiang B, et al. A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films. Appl Surf Sci. 2015;347:454–460. doi: 10.1016/j.apsusc.2015.04.136
  • Zhang Y, Fan W, Du HQ, et al. On the photocatalytic activity of lanthanum impregnated TiO2 films prepared by micro-arc oxidation. Mater Technol. 2017;32:480–488. doi: 10.1080/10667857.2016.1277451
  • Dehnavi V, Luan B, Shoesmith D, et al. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surf Coat Technol. 2013;226:100–107. doi: 10.1016/j.surfcoat.2013.03.041
  • Richard C, Photochem J. Regioselectivity of oxidation by positive holes (h+) in photocatalytic aqueous transformations. Photobiol A Chem. 1993;72:179–182. doi: 10.1016/1010-6030(93)85026-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.