612
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Drag reduction effect of ultraviolet laser-fabricated superhydrophobic surface

, , , , , ORCID Icon & ORCID Icon show all
Pages 1307-1314 | Received 08 Sep 2018, Accepted 16 Dec 2018, Published online: 07 Jan 2019

References

  • Marusic I, Mathis R, Hutchins N. Predictive model for wall-bounded turbulent flow. Science. 2010;329(5988):193–196. doi: 10.1126/science.1188765
  • Lee J, Jeong JS, Shung KK. Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect. Ultrasonics. 2013;53(1):249–254. doi: 10.1016/j.ultras.2012.06.008
  • Luo Y, Wang L, Green L, et al. Advances of drag-reducing surface technologies in turbulence based on boundary layer control. J Hydrodyn. 2015;27(4):473–487. doi: 10.1016/S1001-6058(15)60507-8
  • Zhang Y-L, Xia H, Kim E, et al. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter. 2012;8(44):11217–11231. doi: 10.1039/c2sm26517f
  • Dou Z, Wang J, Chen D. Bionic research on fish scales for drag reduction. J Bionic Eng. 2012;9(4):457–464. doi: 10.1016/S1672-6529(11)60140-6
  • Gu Y, Zhao G, Zheng J, et al. Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface. Ocean Eng. 2014;81:50–57. doi: 10.1016/j.oceaneng.2014.02.015
  • Bixler GD, Bhushan B. Fluid drag reduction with Shark-Skin Riblet inspired microstructured surfaces. Adv Funct Mater. 2013;23(36):4507–4528. doi: 10.1002/adfm.201203683
  • Pu X, Li G, Huang H. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface. Biol Open. 2016;5(4):389–396. doi: 10.1242/bio.016899
  • Mohammadi A, Floryan J. Groove optimization for drag reduction. Phys Fluids. 2013;25(11):113601. doi: 10.1063/1.4826983
  • Frohnapfel B, JovanoviĆ J, Delgado A. Experimental investigations of turbulent drag reduction by surface-embedded grooves. J Fluid Mech. 2007;590:107–116. doi: 10.1017/S0022112007008221
  • Walsh MJ, Anders JB. Riblet/LEBU research at NASA Langley. Appl Sci Res. 1989;46(3):255–262. doi: 10.1007/BF00404822
  • Bechert D, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech. 1997;338:59–87. doi: 10.1017/S0022112096004673
  • Brands J, Kliner D, Lipowsky HH, et al. New insights into the microvascular mechanisms of drag reducing polymers: effect on the cell-free layer. Plos One. 2013;8(10):e77252. doi: 10.1371/journal.pone.0077252
  • Battiato I. Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows. The Eur Phys J E. 2014;37(3):19. doi: 10.1140/epje/i2014-14019-0
  • Song W, Wang C, Wei Y, et al. Experimental study of microbubble drag reduction on an axisymmetric body. Mod Phys Lett B. 2018;32(03):1850035. doi: 10.1142/S0217984918500355
  • van Gils DPM, Narezo Guzman D, Sun C, et al. The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J Fluid Mech. 2013;722:317–347. doi: 10.1017/jfm.2013.96
  • Cao M, Li Z, Ma H, et al. Is superhydrophobicity equal to underwater superaerophilicity: regulating the gas behavior on superaerophilic surface via hydrophilic defects. ACS Appl Mater Interfaces. 2018;10(24):20995–21000. doi: 10.1021/acsami.8b05410
  • Ou J, Fang X, Zhao W, et al. Influence of hydrostatic pressure on the corrosion behavior of superhydrophobic surfaces on bare and oxidized aluminum substrates. Langmuir. 2018;34(20):5807–5812. doi: 10.1021/acs.langmuir.8b01100
  • Zhang K, Huang J. Wetting behavior of superhydrophobic materials under hydraulic pressure. Chin J Mater Res. 2014;28(4):281–285.
  • Xiang Y, Huang S, Lv P, et al. Ultimate stable underwater superhydrophobic state. Phys Rev Lett. 2017;119(13):134501. doi: 10.1103/PhysRevLett.119.134501
  • Huang J, Wang F. Thermodynamic stability of Cassie state under pressure. Chin Sci Bull. 2014;59(31):3066–3071. doi: 10.1360/N972014-00530
  • Guan N, Liu Z, Jiang G, et al. Experimental and theoretical investigations on the flow resistance reduction and slip flow in super-hydrophobic micro tubes. Exp Therm Fluid Sci. 2015;69:45–57. doi: 10.1016/j.expthermflusci.2015.08.003
  • Tuo Y, Chen W, Zhang H, et al. One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil. Appl Surf Sci. 2018;446:230–235. doi: 10.1016/j.apsusc.2018.01.046
  • Wang N, Tang L, Cai Y, et al. Scalable superhydrophobic coating with controllable wettability and investigations of its drag reduction. Colloids Surf, A. 2018;555:290–295. doi: 10.1016/j.colsurfa.2018.07.011
  • McHale G, Shirtcliffe N, Evans C, et al. Terminal velocity and drag reduction measurements on superhydrophobic spheres. Appl Phys Lett. 2009;94(6):064104. doi: 10.1063/1.3081420
  • Ahmmed KT, Kietzig A-M. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces. Soft Matter. 2016;12(22):4912–4922. doi: 10.1039/C6SM00436A
  • Wan Y, Wang T, Wang Z, et al. Construction and characterization of micro/nano-topography on titanium alloy formed by micro-milling and anodic oxidation. The Int J Adv Manuf Technol. 2018;98(1–4):29–35.
  • Ren B, Wan Y, Wang G, et al. Morphologically modified surface with hierarchical micro-/nano-structures for enhanced bioactivity of titanium implants. J Mater Sci. 2018;53(18):12679–12691. doi: 10.1007/s10853-018-2554-3
  • Song Z, Xie Z, Ding L, et al. Corrosion resistance of super-hydrophobic coating on AZ31B Mg alloy. Int J Electrochem Sci. 2018;13(7):6190–6200. doi: 10.20964/2018.07.29
  • Dou W, Wang P, Wu J, et al. Strong acid resistance from electrochemical deposition of WO3 on super-hydrophobic CuO-coated copper surface. Mater Corros. 2018;69(8):978–984. doi: 10.1002/maco.201709878
  • Lv D, Shao H, Gao X, et al. Fabrication and corrosion resistance properties of super-hydrophobic coatings on iron and steel substrates by creating micro-/nano-structures and modifying rough surfaces. RSC Adv. 2016;6(96):93419–93427. doi: 10.1039/C6RA17655K
  • Wang M, Wang W, He B, et al. Corrosion behavior of hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution. Mater Corros. 2011;62(4):320–325. doi: 10.1002/maco.200905451
  • Tang M-K, Huang X-J, Yu J-G, et al. Simple fabrication of large-area corrosion resistant superhydrophobic surface with high mechanical strength property on TiAl-based composite. J Mater Process Technol. 2017;239:178–186. doi: 10.1016/j.jmatprotec.2016.08.024
  • Ke-Ke M, Yue J, Zhong-Hao J, et al. Residual stress induced wetting variation on electric brush-plated Cu film. Chin Phys B. 2014;23(3):038201. doi: 10.1088/1674-1056/23/3/038201
  • Nosonovsky M. Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis. J Chem Phys. 2007;126(22):224701. doi: 10.1063/1.2739525
  • Chu K-HW. Effects of shear rate and small periodic corrugation on the slip velocity in microscopic domain. Microfluid Nanofluidics. 2008;5(2):273–279. doi: 10.1007/s10404-007-0245-5
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988–994. doi: 10.1021/ie50320a024
  • Cassie A, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–551. doi: 10.1039/tf9444000546
  • Lum K, Chandler D, Weeks JD. Hydrophobicity at small and large length scales. J Phys Chem B. 1999;103(22):4570–4577. doi: 10.1021/jp984327m

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.