341
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Ni-P-TiO2 nanocomposite coatings with uniformly dispersed Ni3Ti intermetallics: effects of TiO2 nanoparticles concentration

&
Pages 1070-1080 | Received 03 Sep 2018, Accepted 26 Dec 2018, Published online: 07 Jan 2019

References

  • Soleimani R, Mahboubi F, Kazemi M, et al. Corrosion and tribological behaviour of electroless Ni–P/nano-SiC composite coating on aluminium 6061. Surf Eng. 2015;31:714–721. doi: 10.1179/1743294415Y.0000000012
  • Hu XG, Cai WJ, Xu YF, et al. Electroless Ni–P–(nano-MoS2) composite coatings and their corrosion properties. Surf Eng. 2009;25:361–366. doi: 10.1179/174329408X282532
  • Rahimi AR, Modarress H, Amjad Iranagh S. Effect of alumina nanoparticles as nanocomposites on morphology and corrosion resistance of electroless Ni–P coatings. Surf Eng. 2011;27:26–31. doi: 10.1179/174329409X438998
  • Liu B, Liu LR, Liu XJ. Effects of carbon nanotubes on crystallisation in amorphous Ni–P electroplating coating. Surf Eng. 2013;29:190–193. doi: 10.1179/1743294412Y.0000000090
  • Wu YC, Li GH, Zhang L. Wear resistance of electroless deposited Ni–P and Ni–P/SiC composite coatings on low alloy cast iron. Surf Eng. 2000;16:506–510. doi: 10.1179/026708400101517521
  • Zarebidaki A, Allahkaram SR. Porosity measurement of electroless Ni–P coatings reinforced by CNT or SiC particles. Surf Eng. 2012;28:400–405. doi: 10.1179/1743294411Y.0000000087
  • Song YW, Shan DY, Chen RS, et al. Study on electroless Ni–P–ZrO2 composite coatings on AZ91D magnesium alloys. Surf Eng. 2007;23:334–338. doi: 10.1179/174329406X150422
  • Liu B, Liu LR, Liu XJ. Effects of carbon nanotubes on hardness and internal stress in Ni–P coatings. Surf Eng. 2013;29:507–510. doi: 10.1179/1743294413Y.0000000152
  • Kasazaki Y, Fujiwara H, Miyamoto H. Age-hardening mechanism for nanocrystalline Ni–P alloys synthesized by electrodeposition. Surf Coat Technol. 2014;253:154–160. doi: 10.1016/j.surfcoat.2014.05.029
  • Ng PK, Snyder DD, LaSala J, et al. Structure and crystallization of nickel-phosphorus alloys prepared by high-rate electrodeposition. J Electrochem Soc. 1988;135:1376–1381. doi: 10.1149/1.2095994
  • Dhanapal K, Narayanan V, Stephen A. Effect of phosphorus on magnetic property of Ni–P alloy synthesized using pulsed electrodeposition. Mater Chem Phys. 2015;166:153–159. doi: 10.1016/j.matchemphys.2015.09.039
  • Hansal WE, Sandulache G, Mann R, et al. Pulse-electrodeposited NiP–SiC composite coatings. Electrochim Acta. 2013;114:851–858. doi: 10.1016/j.electacta.2013.08.182
  • Chou MC, Ger MD, Ke ST, et al. The Ni–P–SiC composite produced by electro-codeposition. Mater Chem Phys. 2005;92:146–151. doi: 10.1016/j.matchemphys.2005.01.021
  • Chang L, Chen CH, Fang H. Electrodeposition of Ni–P Alloys from a sulfamate electrolyte relationship between bath pH and structural characteristics. J Electrochem Soc. 2008;155:D57–D61. doi: 10.1149/1.2803516
  • Zoikis-Karathanasis A, Pavlatou EA, Spyrellis N. Pulse electrodeposition of Ni–P matrix composite coatings reinforced by SiC particles. J Alloys Compd. 2010;494:396–403. doi: 10.1016/j.jallcom.2010.01.057
  • Sheu HH, Huang PC, Tsai LC, et al. Effects of plating parameters on the Al2O3 composite coatings prepared by pulse and direct current plating. Surf Coat Technol. 2013;235:529–535. doi: 10.1016/j.surfcoat.2013.08.020
  • Gomes A, Pereira I, Fernández B, et al. Electrodeposition of metal matrix nanocomposites: improvement of the chemical characterization techniques. In: Reddy B, editor. Advances in Nanocomposites. Rijeka: IntechOpen; 2011;503–526.
  • Low CT, Wills RG, Walsh FC. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol. 2006;201:371–383. doi: 10.1016/j.surfcoat.2005.11.123
  • Rasooli A, Safavi MS, Hokmabad MK. Cr2O3 nanoparticles: A promising candidate to improve the mechanical properties and corrosion resistance of Ni-Co alloy coatings. Ceram Int. 2018;44:6466–6473. doi: 10.1016/j.ceramint.2018.01.044
  • Ma C, Guo X, Leang J, et al. Synthesis and characterization of Ni–P–TiN nanocomposites fabricated by magnetic electrodeposition technology. Ceram Int. 2016;42:10428–10432. doi: 10.1016/j.ceramint.2016.03.187
  • Łosiewicz B. Experimental design in the electrodeposition process of porous composite Ni–P+ TiO2 coatings. Mater Chem Phys. 2011;128:442–448. doi: 10.1016/j.matchemphys.2011.03.028
  • Gierlotka D ROE, Budniok A, et al. Production and properties of electrolytic Ni–P–TiO2 composite layers. J Appl Electrochem. 1997;27:1349–1354. doi: 10.1023/A:1018416927715
  • Łosiewicz B, Stepień A, Gierlotka D, et al. Composite layers in Ni–P system containing TiO2 and PTFE. Thin Solid Films. 1999;349:43–50. doi: 10.1016/S0040-6090(99)00175-3
  • Hou KH, Hwu WH, Ke ST, et al. Ni–P–SiC composite produced by pulse and direct current plating. Mater Chem Phys. 2006;100:54–59. doi: 10.1016/j.matchemphys.2005.12.016
  • Marshall GW, Lewis DB, Clayton D, et al. The electrodeposition of Ni-P-Al2O3 deposits. Surf Coat Technol. 1997;96:353–358. doi: 10.1016/S0257-8972(97)00355-1
  • Wang Q, Callisti M, Miranda A, et al. Evolution of structural, mechanical and tribological properties of Ni–P/MWCNT coatings as a function of annealing temperature. Surf Coat Technol. 2016;302:195–201. doi: 10.1016/j.surfcoat.2016.06.011
  • ZHOU XW, YF SHEN, JIN HM, et al. Microstructure and depositional mechanism of Ni–P coatings with nano-ceria particles by pulse electrodeposition. Trans Nonferrous Met Soc. 2012;22:1981–1988. doi: 10.1016/S1003-6326(11)61417-9
  • He Y, Wang SC, Walsh FC, et al. Self-lubricating Ni-P-MoS2 composite coatings. Surf Coat Technol. 2016;307:926–934. doi: 10.1016/j.surfcoat.2016.09.078
  • He Y, Sun WT, Wang SC, et al. An electrodeposited Ni-P-WS2 coating with combined super-hydrophobicity and self-lubricating properties. Electrochim Acta. 2017;245:872–882. doi: 10.1016/j.electacta.2017.05.166
  • Suzuki Y, Arai S, Endo M. Ni–P alloy–carbon black composite films fabricated by electrodeposition. Appl Surf Sci. 2010;256:6914–6917. doi: 10.1016/j.apsusc.2010.04.109
  • Chang TFM, Sone M, Shibata A, et al. Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath. Electrochim Acta. 2010;55:6469–6475. doi: 10.1016/j.electacta.2010.06.037
  • Ahmad YH, Mohamed A. Electrodeposition of nanostructured nickel-ceramic composite coatings: a review. 2014.
  • Karslioglu R, Akbulut H. Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition. Appl Surf Sci. 2015;353:615–627. doi: 10.1016/j.apsusc.2015.06.161
  • Hou KH, Jeng MC, Ger MD. The heat treatment effects on the structure and wear behavior of pulse electroforming Ni–P alloy coatings. J Alloys Compd. 2007;437:289–297. doi: 10.1016/j.jallcom.2006.07.120
  • Madram AR, Pourfarzad H, Zare HR. Study of the corrosion behavior of electrodeposited Ni–P and Ni–P–C nanocomposite coatings in 1M NaOH. Electrochim Acta. 2012;85:263–267. doi: 10.1016/j.electacta.2012.08.061
  • Pillai AM, Rajendra A, Sharma AK. Electrodeposited nickel–phosphorous (Ni–P) alloy coating: an in-depth study of its preparation, properties, and structural transitions. J Coat Technol Res. 2012;9:785–797. doi: 10.1007/s11998-012-9411-0
  • Hou KH, Jeng MC, Ger MD. A study on the wear resistance characteristics of pulse electroforming Ni–P alloy coatings as plated. Wear. 2007;262:833–844. doi: 10.1016/j.wear.2006.08.023
  • Chuang YC, Chung ST, Chiu SY, et al. Effect of surfactant on the electrodeposition of Ni–P coating in emulsified supercritical CO2 baths. Thin Solid Films. 2013;529:322–326. doi: 10.1016/j.tsf.2012.05.039
  • Zadeh KM, Shakoor RA, Radwan AB. Structural and electrochemical properties of electrodeposited Ni–P nanocomposite coatings containing mixed ceramic oxide particles. Int J Electrochem Sci. 2016;11:7020–7030. doi: 10.20964/2016.08.42
  • Wang Y, Tay SL, Wei S, et al. Microstructure and properties of sol-enhanced Ni-Co-TiO2 nano-composite coatings on mild steel. J Alloys Compd. 2015;649:222–228. doi: 10.1016/j.jallcom.2015.07.147
  • Benea L, Bonora PL, Borello A, et al. Composite electrodeposition to obtain nanostructured coatings. J Electrochem Soc. 2001;148:C461–C465. doi: 10.1149/1.1377279
  • Reddy BS, Das K, Datta AK, et al. Pulsed co-electrodeposition and characterization of Ni-based nanocomposites reinforced with combustion-synthesized, undoped, tetragonal-ZrO2 particulates. Nanotechnology. 2008;19:115603. doi: 10.1088/0957-4484/19/11/115603
  • Lewis DB, Marshall GW. Investigation into the structure of electrodeposited nickel-phosphorus alloy deposits. Surf Coat Technol. 1996;78:150–156. doi: 10.1016/0257-8972(94)02402-2
  • Haynes WM. CRC handbook of chemistry and physics. Boca Raton (FL): CRC Press; 2014.
  • Mokgalaka MN, Pityana SL, Popoola PA, et al. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4 V substrates. Adv. Mater Sci Eng. 2014.
  • Zhao D, Yang Y, Liu J, et al. Effect of soaking time on the preparation of porous NiTi alloy during fields-activated micro-sintering and forming technology. MATEC Web of Conferences. 2015. EDP Sciences.
  • ZHANGH JL, Wenge LI, et al. Microstructure and properties of in situ synthesized TiB2+ WC reinforced composite coatings. Rare Met. 2008;27:451–456. doi: 10.1016/S1001-0521(08)60161-8
  • Adesina OS, POPOOLA A, PITYANA S, et al. A study on scan speed relationship with microstructural evolution, phase composition and microhardness of Ni-containing intermetallic coatings on Ti–6Al–4 V using laser cladding technique. Surf Rev Lett. 2017;25:1950035. doi: 10.1142/S0218625X19500355
  • Gandova V. Thermodynamic description of Ni based binary phase diagrams. IJISET. 2016;3:161–166.
  • Setton M, Van der Spiegel J, Rothman B. Formation of a ternary silicide for Ni/Ti/Si (100) and Ni/TiSi2 structures. J Mater Res. 1989;4:1218–1226. doi: 10.1557/JMR.1989.1218
  • Lück R, Arpshofen I, Predel B, et al. Calorimetric determination of the enthalpies of formation of liquid Ni-Ti alloys. Thermochim Acta. 1988;131:171–181. doi: 10.1016/0040-6031(88)80071-6
  • Kaufman L, Nesor H. Coupled phase diagrams and thermochemical data for transition metal binary systems – II. Calphad. 1978;2:81–108. doi: 10.1016/0364-5916(78)90006-8
  • Gachon JC, Hertz J. Enthalpies of formation of binary phases in the systems FeTi, FeZr, CoTi, CoZr, NiTi, and NiZr, by direct reaction calorimetry. Calphad. 1983;7:1–12. doi: 10.1016/0364-5916(83)90024-X
  • Garay JE, Anselmi-Tamburini U, Munir ZA. Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater. 2003;51:4487–4495. doi: 10.1016/S1359-6454(03)00284-2
  • Garay JE, Glade SC, Anselmi-Tamburini U, et al. Electric current enhanced defect mobility in Ni 3 Ti intermetallics. Appl Phys Lett. 2004;85:573–575. doi: 10.1063/1.1774268
  • Zhou Y, Wang Q, Sun DL, et al. Co-effect of heat and direct current on growth of intermetallic layers at the interface of Ti–Ni diffusion couples. J Alloys Compd. 2011;509:1201–1205. doi: 10.1016/j.jallcom.2010.09.182
  • Luo H, Leitch M, Behnamian Y, et al. Development of electroless Ni–P/nano-WC composite coatings and investigation on its properties. Surf Coat Technol. 2015;277:99–106. doi: 10.1016/j.surfcoat.2015.07.011
  • Ordine AP, Diaz SL, Margarit IC, et al. Electrochemical study on Ni–P electrodeposition. Electrochim Acta. 2006;51:1480–1486. doi: 10.1016/j.electacta.2005.02.129
  • Ranjith B, Kalaignan GP. Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath. Appl Surf Sci. 2010;257:42–47. doi: 10.1016/j.apsusc.2010.06.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.