525
Views
6
CrossRef citations to date
0
Altmetric
Reviews

The correlation between structure, multifunctional properties and applications of PVD MAX phase coatings. Part II. Texture and high-temperature properties

Pages 268-302 | Received 04 Apr 2019, Accepted 21 Apr 2019, Published online: 21 May 2019

References

  • Lippens BC, de Boer JH. Study of phase transformations during calcination of aluminum hydroxides by selected area diffraction. Acta Crystallogr. 1964;17:1312–1321.
  • Steiner CJ-P, Hasselman DPH, Spriggs RM. Kinetics of the gamma-to-alpha alumina phase transformation. J Am Ceram Soc. 1971;54(8):412–413.
  • Morrissey KJ, Czanderna KK, Carter CB. Growth of α-Al2O3 within a transition alumina matrix. J Am Ceram Soc. 1984;66(5):C-88–C-90.
  • Wilson SJ, McConnell JD. A kinetic study of the system γ-AlOOH/Al2O3. J Solid State Chem. 1980;34:315–322.
  • Levi CG, Jayaram V, Valencia JJ, et al. Phase selection in electrohydrodynamic atomization of alumina. J Mater Res. 1988;3(5):969–983.
  • Polli AD, Lange FF, Levi CG, et al. Crystallization behavior and microstructure evolution of (Al,Fe)2O3 synthesized from liquid precursors. J Am Ceram Soc. 1996;79(7):1745–55.
  • Kumagai M, Messing GL. Controlled transformation and sintering of a boehmite sol–gel by α-alumina seeding. J Am Ceram Soc. 1985;68(9):500–505.
  • Wanke SE, Flynn PC. The sintering of supported metal catalysts. Catal Rev Sci Eng. 1975;12:93–135.
  • Evans AG, Mumm DR, Hutchinson JW, et al. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci. 2001;46(5):505–553.
  • Evans AG, Fleck NA, Faulhaber S, et al. Scaling laws governing the erosion and impact resistance of thermal barrier coatings. Wear. 2006;260:886–894.
  • Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28:1405–1419.
  • Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37:891–898.
  • Tolpygo VK, Clarke DR. Wrinkling of α-alumina films grown by oxidation – II. Oxide separation and failure. Acta Mater. 1998;46(14):5167–5174.
  • Tolpygo VK. The Morphology of thermally grown α-Al2O3 scales on Fe–Cr–Al alloys. Oxid Met. 1999;51(5):449–477.
  • Tolpygo VK, Clarke DR. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Mater. 2000;48:3283–3293.
  • Clarke DR, Christensen RJ, Tolpygo VK. The evolution of oxidation stresses in zirconia thermal barrier coated superalloy leading to spalting failure. Surf Coat Technol. 1997;94–95:89–93.
  • Brumm MW, Grabke HJ. The oxidation behavior of NiAl—I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys. Corros Sci. 1992;33(11):1677–1690.
  • Levi CG, Sommer E, Terry SG, et al. Alumina grown during deposition of thermal barrier coatings on NiCrAlY. J Am Ceram Soc. 2002;86(4):676–685.
  • Rybicki GC, Smialek JL. Effect of the θ–α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr. Oxid Met. 1989;31(3–4):275–304.
  • Doychak J, Smialek JL, Mitchell TE. Transient oxidation of single crystal β-NiAl. Met Trans A. 1989;20(3):499–518.
  • Mennicke C, Mumm DR, Clarke DR. Transient phase evolution during oxidation of a two-phase NiCoCrAlY bond coat. Z Metall. 1999;90(12):1079–1084.
  • Simpson TW, Wen Q, Yu N, et al. Kinetics of the amorphous → γ → α transformations in aluminum oxide: effect of crystallographic orientation. J Am Ceram Soc. 1998;81(1):61–66.
  • Yu N, Simpson TW, McIntyre PC, et al. Doping effects on the kinetics of solid-phase epitaxial growth of amorphous alumina thin films on sapphire. Appl Phys Lett. 1995;67(7):924–926.
  • Golightly FA, Stott FH, Wood GC. The relationship between oxide grain morphology and growth mechanisms for Fe–Cr–Al and Fe–Cr–Al–Y alloys. J Electrochem Soc. 1979;126(6):1035–1042.
  • Choquet P, Indrigo C, Mevrel R. Microstructure of oxide scales formed on cyclically oxidized M-Cr–AI–Y coatings. Mater Sci Eng. 1987;88:97–101.
  • Huntz AM. Influence of active elements on the oxidation mechanism of M-Cr–Al alloys. Mater Sci Eng. 1987;87:251–260.
  • Huntz AM. Effect of active elements on the oxidation behaviour of Al2O3-formers. In The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, Proceedings of the European Colloquium organised by: Commission of the European Communities Directorate General: Science, Research and Development, edited by E. Lang, Barking, Essex: Elsevier Applied Science, 81–109; 1989.
  • Choi SR, Tikare V. Crack healing behavior of hot pressed silicon nitride due to oxidation. Scr Metall Mater. 1992;26:1263–1268.
  • Yao C, Qazi JI, Rack HJ, et al. Improved bone cell adhesion on ultrafine grained titanium and Ti– 6Al–4V. Ceramic Nanomaterials and Nanotechnology III, 106th Acers Transactions. 2004: 159.
  • Ando K, Furusawa K, Chu MC, et al. Crack-healing behavior under stress of mullite/silicon carbide ceramics and the resultant fatigue strength. J Am Ceram Soc. 2001;84(9):2073–2078.
  • Ando K, Shirai Y, Nakatani M, et al. (Crack-healing + proof test): a new methodology to guarantee the structural integrity of a ceramics component. J Eur Ceram Soc. 2002;22(1):121–128.
  • Gupta TK. Crack healing and strengthening of thermally shocked alumina. J Am Ceram Soc. 1976;59(5-6):259–262.
  • Berger O, Boucher R, Ruhnow M. Part I. Mechanism of oxidation of Cr2AlC films in temperature range 700–1200°C. Surf Eng. 2015;31(5):373–385.
  • Berger O, Boucher R, Ruhnow M. Part II. Oxidation of yttrium doped Cr2AlC films in temperature range between 700–1200°C. Surf Eng. 2015;31(5):386–396.
  • Berger O, Leyens C, Heinze S, et al. Self-healing of yttrium-doped Cr2AlC MAX phase coatings deposited by HIPIMS, Fourth International Conference on Self-Healing Materials (ICSHM2013), 16–20 June 2013, Conference Proceedings, 319–323; 2013.
  • Berger O, Boucher R. Crack healing in Y-doped Cr2AlC-MAX phase coatings. Surf Eng. 2017;33(3):192–203.
  • Barsoum MW, El-Raghy T, Ogbuji L. Oxidation of Ti3SiC2 in air. J Electrochem Soc. 1997;144:2508–2516.
  • Barsoum MW, Ho-Duc LH, Radovic M, et al. Long time oxidation study of Ti3SiC2, Ti3SiC2/SiC and Ti3SiC2/TiC composites in air. J Electrochem Soc. 2003;150:B166–B175.
  • Barsoum MW. MAX Phases: Properties of machinable carbides and nitrides. Weinheim: Wiley VCH GMbH; 2013.
  • El-Raghy T, Barsoum MW. Processing and mechanical properties of Ti3SiC2: I, reaction path and microstructure evolution. J Am Ceram Soc. 1999;82(10):2849–2854.
  • Sun ZM, Zhou YC, Li MS. Oxidation behavior of Ti3SiC2-based ceramic at 900-1300°C in air. Corros Sci. 2001;43:1095–1109.
  • Sun Z, Zhou Y, Li M. High temperature oxidation behavior of Ti3SiC2-based material in air. Acta Mater. 2001;49:4347–4353.
  • Sun Z, Zhou Y, Li M. Cyclic-oxidation behavior of Ti3SiC2-base material at 1100°C. Oxid Met. 2002;57(5/6):379–394.
  • Sun ZM. Progress in research and development on MAX phases: a family of metallic ceramics. Int Mater Rev. 2011;56(3):143–166.
  • Radovic M, Barsoum MW, El-Raghy T, et al. Tensile creep of fine grained (3–5 μm) Ti3SiC2 in the 1000–1200°C temperature range. Acta Mater. 2001;49:4103–4112.
  • Racault C, Langlais F, Naslain R. Solid-state synthesis and characterization of the ternary phase Ti3SiC2. J Mater Sci. 1994;29:3384–3392.
  • Zhang HB, Zhou YC, Bao YW, et al. Oxidation behavior of bulk Ti3SiC2 at intermediate temperatures in dry air. J Mater Res. 2006;21:402–408.
  • Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2 at 1000–1400°C in air. Corros Sci. 2003;45:891–907.
  • Qian X, He XD, Li YB, et al. Cyclic oxidation of Ti3AlC2 at 1000–1300°C in air. Corros Sci. 2011;53:290–295.
  • Lee DB, Park SW. High-temperature oxidation of Ti3AlC2 between 1173 and 1473 K in air. Mater Sci Eng A. 2006;434:147–154.
  • Xu L, Zhu D, Liu Y, et al. Effect of texture on oxidation resistance of Ti3AlC2. J Eur Ceram Soc. 2017;38(10):3417–3423.
  • Wang XH, Zhou YC. Microstructure and properties of Ti3AlC2 prepared by the solid–liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater. 2002;50:3143–3149.
  • Song GM, Schnabel V, Kwakernaak C, et al. High temperature oxidation behaviour of Ti2AlC ceramic at 1200°C. Mater High Temp. 2012;29:205–209.
  • Tallman DJ, Anasori B, Barsoum MW. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Mater Res Lett. 2013;1(3):115–125.
  • Wang XH, Li FZ, Chen JX, et al. Insights into high temperature oxidation of Al2O3- forming Ti3AlC2. Corros Sci. 2012;58:95–103.
  • Smialek JL. Oxygen diffusivity in alumina scales grown on Al-MAX phases. Corros Sci. 2015;91:281–286.
  • Smialek JL. Unusual oxidative limitations for Al-MAX phases, NASA/TM-2017-219444, Cleveland, OH, 1–29; 2017a.
  • Song GM, Pei YT, Sloof WG, et al. Early stages of oxidation of Ti3AlC2 ceramics. Mater Chem Phys. 2008;112:762–768.
  • Song GM, Pei YT, Sloof WG, et al. Oxidation-induced crack healing in Ti3AlC2 ceramics. Scr Mater. 2008;58:13–16.
  • Tzenov NV, Barsoum MW. Synthesis and Characterization of Ti3AlC2. J Am Ceram Soc. 2000;83:825–832.
  • Bao YW, Hu CF, Zhou YC. Damage tolerance of nanolayer grained ceramics and quantitative estimation. Mater Sci Technol. 2006;22(2):227–230.
  • Zhou YC, Sun ZM, Wang XH, et al. Ab initio geometry optimization and ground state properties of layered ternary carbides Ti3MC2 (M = Al, Si and Ge). JPhys: Condens Matter. 2001;13:10001–10010.
  • Zhou YC, Wang XH, Sun ZM, et al. Electronic and structural properties of the layered ternary carbide Ti3AlC2. J Mater Chem. 2001;11:2335–2339.
  • Lide DR. Handbook of Chemistry and Physics. 76th ed. New York: CRC Press; 2000, 5–72.
  • Lin ZJ, Zhou MJ, Zhou YC, et al. Microstructures and adhesion of the oxide scale formed on titanium aluminum carbide substrates. J Am Ceram Soc. 2006;89:2964–2966.
  • Barsoum M. Oxidation of Tin+1AlXn (n = 1–3 and X = C, N). I. Model. J Electrochem Soc. 2001;148(8):C544–C50.
  • Barsoum M, Tzenov N, Procopio A, et al. Oxidation of Tin+1AlXn (n = 1–3 and X = C, N). II. Experimental results. J Electrochem Soc. 2001;148(8):C551–C62.
  • Wang XH, Zhou YC. Intermediate-temperature oxidation behavior of Ti2AlC in air. J Mater Res. 2002;17(11):2974–2981.
  • Rao JC, Pei YT, Yang HJ, et al. TEM study of the initial oxide scales of Ti2AlC. J Acta Mater. 2011;59:5216–5223.
  • Yang HJ, Pei YT, Rao JC, et al. High temperature healing of Ti2AlC: On the origin of inhomogeneous oxide scale. Scr Mater. 2011;65:135–138.
  • Wang XH, Zhou YC. High-temperature oxidation behavior of Ti2AlC in air. Oxid Met. 2003;59:303–320.
  • Byeon JW, Liu J, Hopkins M, et al. Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxid Met. 2007;68:97–111.
  • Yang HJ, Pei YT, Rao JC, et al. Self-healing performance of Ti2AlC ceramic. J Mater Chem. 2012;22:8304–8313.
  • Basu S, Obando N, Gowdy A, et al. Long-term oxidation of Ti2AlC in air and water vapor at 1000–1300 °C temperature range. J Electrochem Soc. 2012;159:C90–C96.
  • Sundberg M, Malmqvist G, Magnusson A, et al. Alumina forming high temperature silicides and carbides. Ceram Int. 2004;30:1899–1904.
  • Wang XH, Zhou YC. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J Mater Sci Technol. 2010;26:385–416.
  • Cui B, Jayaseelan DD, Lee WE. Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics. Acta Mater. 2011;59:4116–4125.
  • Smialek JL. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxid Met. 2015;83:351–366.
  • Smialek JL. Environmental resistance of a Ti2AlC-type MAX phase in a high pressure burner rig. J Eur Ceram Soc. 2017;37:23–34.
  • Sigumonrong DP, Zhang J, Zhou Y, et al. Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets. J Phys D: Appl Phys. 2009;42D:185408-1–185408-8.
  • Wilhelmsson O, Palmquist J-P, Nyberg T, et al. Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering. Appl Phys Lett. 2004;85:1066–1068.
  • Schneider JM, Sigumonrong DP, Music D, et al. Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics. Scr Mater. 2007;57:1137–1140.
  • Mockute A, Dahlqvist M, Hultman L, et al. Oxygen incorporation in Ti2AlC thin films studied by electron energy loss spectroscopy and ab initio calculations. J Mater Sci. 2013;48:3686–3691.
  • Rosén J, Persson POÅ, Ionescu M, et al. Oxygen incorporation in Ti2AlC thin films. Appl Phys Lett. 2008;92:064102.
  • Persson POÅ, Rosén J, McKenzie DR, et al. Formation of the MAX-phase oxycarbide Ti2AlC1−xOx studied via electron energy-loss spectroscopy and first-principles calculations. Phys Rev B: Condens Matter. 2009;80:092102.
  • Liao T, Wang JY, Zhou YC. First-principles investigation of intrinsic defects and (N, O) impurity atom stimulated Al vacancy in Ti2AlC. Appl Phys Lett. 2008;93:261911.
  • Liao T, Wang JY, Li MS, et al. First-principles study of oxygen incorporation and migration mechanisms in Ti2AlC. J Mater Res. 2009;24:3190–3196.
  • to Baben M, Shang L, Emmerlich J, et al. Oxygen incorporation in M2AlC (M = Ti, V, Cr). Acta Mater. 2012;60:4810–4818.
  • Lin ZJ, Zhou YC, Li MS, et al. In-situ hot pressing/solid–liquid reaction synthesis of bulk Cr2AlC. Z Metallkd. 2005;96:291–296.
  • Lin ZJ, Li MS, Wang JY, et al. High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 2007;55(18):6182–6191.
  • Lee DB, Nguyen T, Han J, et al. Oxidation of Cr2AlC at 1300°C in air. Corros Sci. 2007;49(10):3926–3934.
  • Lee DB, Park S. Oxidation of Cr2AlC between 900 and 1200°C in air. Oxid Met. 2007;68(5–6):211–222.
  • Lee DB, Nguyen TD. Cyclic oxidation of Cr2AlC between 1000 and 1300°C in air. J Alloys Compd. 2008;464:434–439.
  • Lee DB, Nguyen T, Park S. Long-time oxidation of Cr2AlC between 700 and 1000°C in air. Oxid Met. 2012;77:275–287.
  • Tian WB, Wang PL, Kan YM, et al. Oxidation behaviour of Cr2AlC ceramics at 1100 and 1250°C. J Mater Sci. 2008;43:2785–2791.
  • Li JJ, Li MS, Xiang HM, et al. Short-term oxidation resistance and degradation of Cr2AlC coating on M38G superalloy at 900–1100°C. Corros Sci. 2011;53:3813–3820.
  • Yang HJ, Pei YT, De Hosson JTM. Oxide-scale growth on Cr2AlC ceramic and its consequence for self-healing. Scr Mater. 2013;69:203–206.
  • Wang J, Zhou Y, Liao T, et al. A first principles investigation of the phase stability of Ti2AlC with Al vacancies. Scr Mater. 2008;58:227–230.
  • Lin ZJ, Li MS, Wang JY, et al. Microstructure and high-temperature corrosion behavior of a Cr–Al–C composite. J Am Ceram Soc. 2007;90:3930–3937.
  • Li S, Chen X, Zhou Y, et al. Influence of grain size on high temperature oxidation behaviour of Cr2AlC ceramics. Ceram Int. 2012;32:2715–2721.
  • Smialek JL. Universal characteristics of an interfacial spalling cyclic oxidation model. Acta Materialia. 2004;52:2111–2121.
  • Gonzalez-Julian J, Go T, Mack DE, et al. Environmental resistance of Cr2AlC MAX phase under thermal gradient loading using a burner rig. J Am Ceram Soc. 2018;101(5):1841–1846.
  • Hajas DE, to Baben M, Hallstedt B, et al. Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410°C. Surf Coat Technol. 2011;206:591–596.
  • Iskandar MR. Growth Mechanisms and Microstructure Evolution of MAX phases Thin Films and of Oxide Scales on High Temperature Materials, (Dissertation), Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Fakultät für Georessourcen and Materialtechnik, Aachen, 177; 2011.
  • Wang QM, Renteria AF, Schroeter O, et al. Fabrication and oxidation behavior of Cr2AlC on Ti6242 alloy. Surf Coat Technol. 2010;204:2343–2352.
  • Wang QM, Mykhaylonka R, Renteria AF, et al. Improving the high-temperature oxidation resistance of a [beta]-[gamma] TiAl alloy by a Cr2AlC coating. Corros Sci. 2010;52(11):3793–3802.
  • Smialek JL, Garg A. Interfacial reactions of a MAX phase/superalloy hybrid. Surf Interface Anal. 2015;47:844–853.
  • Smialek JL. Oxidation of Al2O3 scale-forming MAX phases in turbine environments. Metall Mater Trans A. 2017. doi: 10.1007/s11661-017-4346-9
  • Smialek JL, Nesbitt JA, Gabb TP, et al. Hot corrosion and low cycle fatigue of a Cr2AlC-coated superalloy. Mater Sci Eng, A. 2018;711:119–129.
  • Berger O, Leyens C, Heinze S, et al. Characterisation of Cr–Al–C and Cr–Al–C–Y films synthesized by High Power Impulse Magnetron Sputtering at low deposition temperature. Thin Solid Films. 2015;580:6–11.
  • Crowell JE, Chen JG, Yates JT. Surface sensitive spectroscopic study of the interaction of oxygen with Al(111) – low temperature chemisorbtion and oxidation. Surf Sci. 1986;165:37–64.
  •  Khanna AS. Introduction to high temperature oxidation and corrosion. Materials Park (OH): ASM International; 2002; 71–86.
  • Birks N, Meier GH, Pettit FS. Introduction to the high temperature of metals. 2nd ed. Cambridge: Cambridge University Press; 2006. 62–105.
  • Li S, Chen X, Zhou Y, et al. Influence of grain size on high temperature oxidation bahavior of Cr2AlC. Ceram Int. 2013;39:2715–2721.
  • Wang J, Wang J, Zhou Y, et al. Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study. Acta Mater. 2008;56:1511–1518.
  • Wang JM, Wang JY, Zhou YC. Stable M2AlC (0001) surfaces (M=Ti, V and Cr) by first-principles investigation. J Phys: Condens Matter. 2008;20(4):225006–225017.
  • Dahlqvist M, Alling B, Abrikosov IA, et al. Phase stability of Ti2AlC upon oxygen incorporation: a first-principles investigation. Phys Rev B: Condens Matter. 2010;81B:024111-1–024111-8.
  • Mo Y, Rulis P, Ching WY. Electronic structure and optical conductivities of 20 MAX-phase compounds. Phys Rev B: Condens Matter. 2012;86B:165122-1–165122-10.
  • Li C, Wang Z, Wang C. Phase stability, mechanical properties and electronic structure of hexagonal and trigonal Ti5Al2C3, An ab initio study. Intermetallics. 2013;33:105–112.
  • Frodelius J, Lu J, Jensen J, et al. Phase stability and initial low-temperature oxidation mechanism of Ti2AlC thin films. J Eur Ceram Soc. 2013;33:375–382.
  • Sun Z, Li S, Ahuja R, et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Commun. 2004;129:589–592.
  • Kanoun MB, Goumri-Said S, Reshak AH. Theoretical study of mechanical, electronical, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC. Comput Mater Sci. 2009;47:491–600.
  • Bouhemadou A. Structural, electronic and elastic properties of MAX phases. Solid State Sci. 2009;11:1875–1881.
  • Bai Y, He X, Li M, et al. Ab initio study of the bonding and elastic properties of Ti2CdC. Solid State Sci. 2010;12:144–147.
  • Ghebouli MA, Ghebouli B, Fatmi M, et al. Theoretical prediction of the structural, elastic, electronic and thermal properties of the MAX phases X2SiC (X=Ti and Cr). Intermetallics. 2011;19:1936–1942.
  • Cui S, Feng W, Hu H, et al. First principle studies of the electronic and elastic properties of Ti2GeC. Solid State Commun. 2011;151:491–494.
  • Cui S, Wei D, Hu H, et al. First-principles study of the structural and elastic properties of Cr2AlX(X5N, C) compounds. J Solid State Chem. 2012;191:147–152.
  • Brik MG, Avram NM, Avram CN. Ab initio calculations of the electronic, structural and elastic properties of Nb2InC. Comp Mater Sci. 2012;63:227–231.
  • Ching W-Y, Mo Y, Aryal S, et al. Intrinsic mechanical properties of 20 MAX-phase compounds. J Am Ceram Soc. 2013;96:2292–2297.
  • Barsoum MW. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:201–281.
  • Palmquist J-P, Jansson U, Seppänen T, et al. Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl Phys Lett. 2002;81:835–837.
  • Palmquist JP, Li S, Persson POÅ, et al. Mn+1 AXn phases in the Ti–Si–C system studied by thin-film synthesis and ab initio calculations. Phys Rev B: Condens Matter. 2004;70B:165401-1–165401-13.
  • Emmerlich J, Högberg H, Sasvári S, et al. Growth of Ti3SiC2 thin films by elemental target magnetron sputtering. J Appl Phys. 2004;96:4817–4826.
  • Gulbinski W, Gilewicz A, Suszko T, et al. Ti–Si–C sputter deposited thin film coatings. Surf Coat Technol. 2004;180/181:341–346.
  • Schneider JM, Sun ZM, Mertens R, et al. Ab initio calculations and experimental determination of the structure of Cr2AlC. Solid State Commun. 2004;130:445–449.
  • Mertens R, Sun ZM, Music D, et al. Effect of the composition on the structure of Cr–Al–C investigated by combinatorial thin film synthesis and ab Initio calculations. Adv Eng Mater. 2004;6:903–907.
  • Wilhelmsson O, Palmquist J-P, Lewin E, et al. Deposition and characterization of ternary thin films within the Ti–Al–C system by DC magnetron sputtering. J Cryst Growth. 2006;291:290–300.
  • Högberg H, Hultman L, Emmerlich J, et al. Growth and characterization of MAX-phase thin films. Surf Coat Technol. 2005;193:6–10.
  • Walter C, Sigumonrong DP, EI-Raghy T, et al. Towards large area deposition of Cr2AlC on steel. Thin Solid Films. 2006;515:389–393.
  • Sun Z, Ahuja R. Ab initio study of the Cr2AlC(0001) surface. Appl Phys Lett. 2006;88:161913-1–161913-3.
  • Music D, Sun Z, Ahuja R, et al. Electronic structure of M2AlC (0001) surfaces (M=Ti, V, Cr). J Phys Condens Matter. 2006;18:8877–8881.
  • Music D, Sun Z, Ahuja R, et al. Surface energy of M2AC(0001) determined by density functional theory (M=Ti, V, Cr; A5Al, Ga, Ge). Surf Sci. 2007;601:896–899.
  • Li N, Sakidja R, Ching W-Y. Oxidation of Cr2AlC (0001): Insights from ab Initio calculations. JOM. 2013;65:1487–1491.
  • Batra IP, Kleinman L. Chemisorption of oxygen on aluminium. J Electron Spectrosc Relat Phenom. 1984;33:175–241.
  • O’Connor DJ, Wouters ER, van der Gon AWD, et al. Oxidation of Al(111). Surf Sci. 1993;287/288:438–442.
  • Zhukov V, Popova I, Yates JT. Initial stages of Al(111) oxidation with oxygen-temperature dependence of the integral reactive sticking coefficient. Surf Sci. 1999;441:251–264.
  • Brune H, Wintterlin J, Trost J, et al. Behm: “Interaction of oxygen with Al(111) studied by scanning tunneling microscopy. J Chem Phys. 1993;99:2128–2148.
  • Gartland PO. Adsorption of oxygen on clean single crystal faces of aluminium. Surf Sci. 1977;62:183–196.
  • McConville CF, Seymour DL, Woodruff DP, et al. Synchrotron radiation core level photoemission investigation of the initial stages of oxidation of Al(111). Surf Sci. 1987;188:1–14.
  • Trost J, Brune H, Wintterlin J, et al. Interaction of oxygen with Al(111) at elevated temperatures. J Chem Phys. 1998;108:1740–1747.
  • The interactive Ellingham diagram, University of Cambridge, Cambridge, UK. Available from http://www.doitpoms.ac.uk/tlplib/ Ellingham_diagrams/interactive.php.
  • Bobzin K. Oberflächentechnik für den Maschinenbau. Weinheim: WILEY-VGH Verlag GmbH&Co.KGaA; 2013; 129.
  • Kim Y, Hsu T. A Reflection Electron Microscopic (REM) Study of α-Al2O3 (0001) Surfaces. Surf Sci. 1991;258:131–146.
  • Shirai T, Watanabe H, Fuji M, et al. Structural properties and surface characteristics on aluminum oxide powders”, Ceramics Research Laboratory, Nagoya Institute of Technology, JAPAN, 9, 23–31; 2009.
  • Peintinger MF, Kratz MJ, Bredow T. Quantum-chemical study of stable, meta-stable and high-pressure alumina polymorphs and aluminum hydroxides. J Mater Chem A. 2014;2:13143–13158.
  • Hahn T. International tables for crystallography. Volume A, Space-group symmetry. IUCr Series. Dordrecht: Springer; 2005. p. 1–911.
  • Paglia G, Buckley CE, Udovic TJ, et al. Boehmite-Derived γ-Alumina System. 2. Consideration of Hydrogen and Surface Effects. Chem Mater. 2004;16:1914–1923.
  • Menendez-Proupin E, Gutierrez G. Electronic properties of bulk γ-Al2O3. Phys Rev B: Condens Matter Mater Phys. 2005;72:035116.
  • Ching W-Y, Ouyang L, Rulis P, et al. Ab initio study of the physical properties of γ−Al2O3: Lattice dynamics, bulk properties, electronic structure, bonding, optical properties, and ELNES/XANES spectra. Phys Rev B: Condens Matter Mater Phys. 2008;78:014106.
  • Paglia G, Buckley CE, Rohl AL, et al. Tetragonal structure model for boehmite-derived γ-alumina. Phys Rev B: Condens Matter Mater Phys. 2003;68:144110.
  • John CS, Alma VCM, Hays GR. Characterization of transition alumina by solid-state magic angle spinning aluminum NMR. Appl Catal. 1983;6:341–46.
  • Oshi Y, Kingery WD. Self-diffusion of oxygen in single crystal and polycrystalline aluminum oxide. J Chem Phys. 1960;33(2):480–486.
  • Paladino AE, Kingery WD. Aluminum ion diffusion in aluminum oxide. J Chem Phys. 1962;37(5):957–962.
  • White CW, Boatner LA, Sklad PS, et al. Ion implantation and annealing of crystalline oxides and ceramic materials. Nucl Instrum Methods Phys Res, Sect B. 1988;32:11–22.
  • Gitzen WH. Alumina as ceramic material. Ohio: The American Ceramic Society; 1970. 103–106.
  • Tien J, Pettit F. Mechanism of oxide adherence on Fe–25Cr–4Al (Y or Sc) alloys. Metall Mater Trans B. 1972;3B:1587–1599.
  • Golightly FA, Stott FH, Wood GC. The influence of scale adhesion alloy yttrium additions on the oxide to an iron-chromium-aluminum oxidation of metals. Oxid Met. 1976;10(3):163–186.
  • Stott FH, Wood GC. Growth and adhesion of oxide scales on Al2O3-forming alloys and coatings. Mater Sci Eng. 1987;87:267–274.
  • Pint BA. Experimental observations in support of the dynamic segregation theory to explain the reactive-element effect. Oxid Met. 1996;45(1/2):1–37.
  • Pint BA, Garratt-Reed AJ, Hobbs LW. Possible role of the oxygen potential gradient in enhancing diffusion of foreign ions on α-Al2O3 grain boundaries. J Am Ceram Soc. 1998;81:305–314.
  • Pint BA. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys. J Am Ceram Soc. 2003;86(4):686–695.
  • Christensen RJ, Tolpygo VK, Clarke DR. The influence of the reactive element yttrium on the stress in alumina scales formed by oxidation. Acta Mater. 1997;45:1761–1766.
  • Xu CH, Gao W, Gong H. Oxidation behaviour of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics. Intermetallics. 2000;8(7):769–779.
  • Cueff R, Buscail H, Caudron E, et al. Oxidation of alumina formers at 1173 K: effect of yttrium ion implantation and yttrium alloying addition. Corros Sci. 2003;45(8):1815–1831.
  • Peng X, Wang F. Morphologic investigation and growth of the alumina scale on magnetron-sputtered CoCrAlNCs with and without yttrium. Corros Sci. 2003;45:2293–2306.
  • Rovere F, Mayrhofer PH, Reinholdt A, et al. The effect of yttrium incorporation on the oxidation resistance of Cr–Al–N coatings. Surf Coat Technol. 2008;202:5870–5875.
  • Grabke HJ. Oxidation of NiAl and FeAl. Intermetallics. 1999;7(10):1153–1158.
  • Boucher R, Berger O, Leyens C. Magnetic properties of bulk and thin film Cr–Al–C compounds. Surf Eng. 2016;32(3):172–177.
  • Boucher R, Berger O. Magnetic model of oxidation process of Y containing Cr–Al–C films. Surf Eng. 2018;34(1):6–13.
  • Prot D, Le Gall M, Lesage B, et al. Self-diffusion in α-Al2O3. IV. Oxygen grain-boundary self-diffusion in undoped and yttria-doped alumina polycrystals. Philos Mag A. 1996;73(4):935–949.
  • Schroeter O. Herstellung und Charakterisierung von PVD-Schichten auf Basis der Cr2AlC–MAX-Phase, (Dissertation), Brandenburgische Technische Universität Cottbus (BTU), Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen, Cottbus, 278; 2011.
  • Smialek JL, Garg A. Microstructure and Oxidation of a MAX Phase/Superalloy Hybrid Interface. NASA/TM, 2014, 216679.
  • Foner S. High-field antiferromagnetic resonance in Cr2O3. Phys Rev. 1963;130(183):183–197.
  • Yang SH, Liu SJ, Hua ZH, et al. Magnetic properties of Al2O3–Cr2O3 solid solutions. J Alloys Compd. 2011;509:6946–6949.
  • Leslie-Pelecky DL. Magnetic properties of nanostructured materials. Chem Mater. 1996;8:1770–1783.
  • Heuer AH, Lagerlof KPD. Oxygen self-diffusion in corundum (alpha-Al2O3): A conundrum. Philos Mag Lett. 1999;79(8):619–627.
  • Heuer AH. Oxygen and aluminum diffusion in α-Al2O3: How much do we really understand? J Eur Ceram Soc. 2008;28:1495–1507.
  • Venkatesan M, Fitzgerald CB, Coey JMD. Unexpected magnetism in a dielectric oxide. Nature. 2004;430:630.
  • Coey JMD, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide. Phys Rev B: Condens Matter. 2005;72:024450.
  • Coey DJM. d0 ferromagnetism. Solid State Sci. 2005;7:660–667.
  • Hong NH, Sakai J, Poirot N, et al. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys Rev. 2006;B 73:132404.
  • Sun S, Wu P, Xing P. Effect of vacuum-annealing on the d0 ferromagnetism of undoped In2O3 films. J Magn Magn Mater. 2012;324:2932–2935.
  • Yoon SD, Chen Y, Yang A, et al. Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films. J Phys: Condens Matter. 2006;18:L355.
  • Elfimov IS, Yunoki S, Sawatzky GA. Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials”. Phys Rev Lett. 2002;89:216403.
  • Osorio-Guillén J, Lany S, Barabash SV, et al. Magnetism without magnetic ions: percolation, exchange and formation energies of magnetism-promoting intrinsic defects in CaO. Phys Rev Lett. 2006;96:107203.
  • Chanier T, Opahle I, Sargolzaei M, et al. Magnetic state around cation vacancies in II–VI semiconductors. Phys Rev Lett. 2008;100:026405.
  • von Oertzen GU, Gerson AR. O deficiency in the rutile TiO2 (110) surface: Ab initio quantum chemical investigation of the electronic properties. Int J Quantum Chem. 2006;106(9):2054–2064.
  • Krüger P, Bourgeois S, Domenichini B, et al. Defect states at the TiO2(110) surface probed by resonant photoelectron diffraction. Phys Rev Lett. 2008;100:055501.
  • Ganguly A, Zhen T, Barsoum MW. Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x=0.5, 0.75) solid solutions. J Alloy Compd. 2004;376:287–295.
  • Hu C, He L, Zhang J, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesised by an in situ reaction/hot pressing method. J Eur Ceram Soc. 2008;28:1679–1685.
  • Gat N, Tabakoff W. Some effects of temperature on the erosion of metals. Wear. 1978;50:85–94.
  • Levy A, Yan J, Paterson J. Elevated temperature erosion of steels. Wear. 1986;108:43–60.
  • Levy A, Man YF. Surface degradation of ductile metals in elevated temperature gas-particle streams. Wear. 1986;111:173–186.
  • Rogers PM, Howes TE, Hutchings IM, et al. Wastage of low alloy steels in a fluidized bed environment. Wear. 1995;186–187:306–315.
  • Howes TE, Rogers PM, Hutchings IM, et al. Erosion-corrosion of mild steel in a temperature gradient. Wear. 1995;186–187:316–324.
  • Suckling M, Allen C. Critical variables in high temperature erosive wear. Wear. 1997;203–204:528–536.
  • Stephenson DJ, Nicholls JR, Hancock P. Particle-surface interactions during the erosion of a gas turbine material (MarM002) by pyrolytic carbon particles. Wear. 1986;111:15–29.
  • Stephenson DJ, Nicholls JR, Hancock P. Particle-surface interactions during the erosion of aluminide-coated MarM002. Wear. 1986;111:31–39.
  • Hancock P, Nicholls JR, Stephenson DJ. The mechanism of high temperature erosion of coated superalloys. Surf Coat Technol. 1987;32:285–304.
  • Tabakoff W. Investigation of coatings at high temperature for use in turbomachinery. Surf Coat Technol. 1989;39/40:97–115.
  • Tabakoff W, Shanov V. Erosion rate testing at high temperature for turbomachinery use. Surf Coat Technol. 1995;76–77(Part 1):75–80.
  • Tabakoff W. Erosion resistance of superalloys and different coatings exposed to particulate flows at high temperature. Surf Coat Technol. 1999;120–121:542–547.
  • Rogers PM, Hutchings IM, Little AJ. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds. Wear. 1995;186–187:238–246.
  • Chinnadurai S, Bahadur S. High-temperature erosion of Haynes and Waspaloy: effect of temperature and erosion mechanisms. Wear. 1995;186–187:299–305.
  • Stack MM, Song-Roehrle Q, Stott FH, et al. Computer simulation of erosion-corrosion interactions at elevated temperatures. Wear. 1995;181–183:516–523.
  • Stack MM, Chacon-Nava J, Stott FH. Relationship between the effects of velocity and alloy corrosion resistance in erosion-corrosion environments at elevated temperatures. Wear. 1995;180:91–99.
  • Stack MM, Pena D. Particle size effects on the elevated temperature erosion behaviour of Ni–Cr/WC MMC-based coatings”. Surf Coat Technol. 1999;113:5–12.
  • Howard RL, Ball A. The effect of test temperature on the particle erosion performance of titanium aluminide alloys. Wear. 1997;205:11–14.
  • Lange FF, Radford KC. Healing of surface cracks in polycrystalline Al2O3. J Am Ceram Soc. 1970;53(7):420–421.
  • Zhou JR, Bahadur S. Erosion characteristics of alumina ceramics at high temperatures. Wear. 1995;181–183:178–188.
  • Franco A, Roberts SG. The effect of impact angle on the erosion rate of polycrystalline α-Al2O3. J Eur Ceram Soc. 1998;18:269–274.
  • Ham AL, Yeomans JA, Watts JF. Effect of temperature and particle velocity on the erosion of a silicon carbide continuous fibre reinforced calcium aluminosilicate glass–ceramic matrix composite. Wear. 1999;233–235:237–245.
  • Hall PW, Swinnea JS, Kovar D. Fracture resistance of highly textured alumina. J Am Ceram Soc. 2001;84(7):1514–1520.
  • Stephenson DJ, Nicholls JR. Modelling the influence of surface oxidation on high temperature erosion wear. Wear. 1995;186–187:284–290.
  • Wellman RG, Nicholls JR. Some observations on erosion mechanisms of EB PVD TBCS. Wear. 2000;242:89–96.
  • Wellman RG, Nicholls JR. High temperature erosion–oxidation mechanisms, maps and models. Wear. 2004;256(9–10):907–917.
  • Chen X, Wang R, Yao N, et al. Foreign object damage in a thermal barrier system: mechanisms and simulations. Mater Sci Eng A. 2003;352:221–231.
  • Chen X, He MY, Spitsberg I, et al. Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear. 2004;256:735–746.
  • Tabakoff W, Wakeman T. Test facility for material erosion at high temperature. American Society for Testing and Materials. 1979;(Special Publication 664):123–135.
  • Stephenson DJ, Nicholls JR. Modelling erosive wear. Corros Sci. 1993;35:1015–1026.
  • Markworth AJ, Nagarajan V, Wright IG. An approach to modeling simultaneous high-temperature oxidation and erosion. Oxid Met. 1991;35(1–2):89–106.
  • Markworth AJ. A stochastic model for the simultaneous occurrence of oxidation and erosion. Mater Sci Eng A. 1992;150:37–41.
  • Stack MM, Stott FH. An approach to modelling erosion–corrosion of alloys using erosion-corrosion maps. Corros Sci. 1993;35:1027–1034.
  • Nicholls JR, Stephenson DJ. Monte Carlo modelling of erosion processes. Wear. 1995;186–187:64–77.
  • Stack MM, Pena D. Mapping erosion of Ni–Cr/WC-based composites at elevated temperatures: some recent advances. Wear. 2001;251:1433–1443.
  • Kang CT, Pettit FS, Birks N. Mechanisms in the simultaneous erosion-oxidation attack of nickel and cobalt at high temperature. Metall Mater Trans A. 1987;18(10):1785–1803.
  • Wright IG, Sethi VK, Markworth AJ. A generalized description of the simultaneous processes of scale growth by high-temperature oxidation and removal by erosive impact. Wear. 1995;186–187:230–237.
  • Roy M, Ray KK, Sundararajan G. Erosion-oxidation interaction in Ni and Ni-20Cr alloy. Metall Mater Trans A. 2001;32(6):1431–1451.
  • Rishel DM, Pettit FS, Birks N. Spalling types and mechanisms in the erosion corrosion of metals at high temperature. Corros Sci. 1993;35:1007–1011.
  • Iwasa M, Bradt RC. Fracture toughness of single-crystal alumina. In: Kingery WD, editor. Advances in ceramics, vol. 10. Columbus, OH: American Ceramics Society; 1984. p. 767–779.
  • Hutchings IM. Ductile-brittle transitions and wear maps for the erosion and abrasion of brittle materials. J Phys D: Appl Phys. 1992;25(1A):A212.
  • Hutchings IM. Transitions, threshold effects and erosion maps. Key Eng Mater. 1992;71:75–92.
  • Salem JA, Shannon JL, Bradt RC. Crack growth resistance of textured alumina. J Am Ceram Soc. 1989;72(1):20–27.
  • Wiederhorn SM. Fracture of sapphire. J Am Ceram Soc. 1969;52:485–491.
  • Inkinson BJ. Dislocations and twinning activated by the abrasion of Al2O3. Acta Mater. 2000;48:1883–1895.
  • Carisey T, Laugier-Werth A, Brandon DG. Control of texture in Al2O3 by gel-casting. J Eur Ceram Soc. 1995;15(1):1–8.
  • Seabaugh MM, Kerscht IH, Messing GL. Texture development by templated grain growth in liquid-phase-sintered α-Alumina. J Am Ceram Soc. 1997;80(5):1181–1188.
  • Hirao K, Ohashi M, Brito ME, et al. Processing strategy for producing highly anisotropic silicon nitride. J Am Ceram Soc. 1995;78(6):1687–1690.
  • Sacks MD, Scheiffele GW, Staab GA. Fabrication of textured silicon carbide via seeded anisotropic grain growth. J Am Ceram Soc. 1996;79(6):1611–1616.
  • Brandt RC, Scott WD. Mechanical properties of alumina, in Alumina. Am Ceram Soc. 1990;73:23–39.
  • Mitchell TE. Application of transmission electron microscopy to the study of deformation in ceramic oxides. J Am Ceram Soc. 1979;62(5–6):254–267.
  • Gupta S, Filimonov D, Zaitsev V, et al. Ambient and 550°C tribological behavior of select MAX phases against Ni-based superalloys. Wear. 2008;264:270–278.
  • Gupta S, Filimonov D, Palanisamy T, et al. Tribological behaviour of select MAX phases against Al2O3 at elevated temperatures. Wear. 2008;265:560–565.
  • van der Zwaag S. Self-healing materials. An alternative approach to 20 centuries of materials science Springer series in materials science 100, The Netherlands: Springer, 385; 2007.
  • Greil P. Generic principles of crack-healing ceramics. J Adv Ceram. 2012;1(4):249–267.
  • Min XM, Ren Y. Electronic structures and bonding properties of Ti2AlC and Ti3AlC2. J Wuhan Univ Technol. 2007;22:27–30.
  • Li S, Song G, Kwakernaak K, et al. Multiple crack healing of a Ti2AlC ceramic. J Eur Ceram Soc. 2012;32:1813–1820.
  • Li SB, Xiao LO, Song GM, et al. Oxidation and crack healing behavior of a fine-grained Cr2AlC ceramic. J Am Ceram Soc. 2013;96(3):892–899.
  • Shen L, Eichner D, van der Zwaag S, et al. Reducing the erosive wear rate of Cr2AlC MAX phase ceramic by oxidative healing of local impact damage. Wear. 2016;358-359:1–6.
  • Sheldon GL, Finnie I. On the ductile behaviour of nominally brittle materials during erosive cutting. J Manuf Sci Eng. 1966;88(4):387–392.
  • Lawn BR, Evans AG, Marshall DB. Elastic/plastic indentation damage in ceramics: the median crack system. J Am Ceram Soc. 1980;63(9–10):574–581.
  • Srinivasan S, Scattergood RO. Effect of erodent hardness on erosion of brittle materials. Wear. 1988;128:139–152.
  • Lawn BR, Deng Y, Marinda P, et al. Overview: Damage in brittle layer structures from concentrated loads. J Mater Res. 2002;17(12):3019–3036.
  • Lawn BR. Fracture and deformation in brittle solids: A perspective on the issue of scale. J Mater Res. 2004;19(1):22–29.
  • Lawn BR, Swain MV. Microfracture beneath point indentations in brittle solids. J Mater Sci. 1975;10(1):113–122.
  • Anstis GR, Chantikul P, Lawn BR, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 1981;64(9):533–538.
  • Braun LM, Bennison SJ, Lawn BR. Objective evaluation of short crack toughness curves using indentation flaws: case study on alumina-based ceramics. J Am Ceram Soc. 1992;75(11):3049–3057.
  • Molina-Aldareguia JM, Emmerlich J, Palmquist J-P, et al. Kink formation around indents in laminated Ti3SiC2 thin films studied in the nanoscale. Scr Mater. 2003;49:155–160.
  • Wang XH, Zhou YC. Hot corrosion of Na2SO4-coated Ti3AlC2 in air at 700-1000°C. J Electrochem Soc. 2004;151(9):B505.
  • Lin Z, Zhou Y, Li M, et al. Hot corrosion and protection of Ti2AlC against Na2SO4 salt in air. J Eur Ceram Soc. 2006;26(16):3871.
  • Liu GM, Li MS, Zhou YC. Hot corrosion of Ti3SiC2-based ceramics coated with Na2SO4 at 900 and 1000°C in air. Corros Sci. 2003;45:1217–1226.
  • Liu GM, Li MS, Zhou YC. Effect of Na2SO4 and water vapor on the corrosion of Ti3SiC2. Oxid Met. 2006;66:115–125.
  • Aw LM, Amendola R, Ryter JW, et al. Investigation of Na2SO4 deposit induced corrosion of Cr, Al, C binary and ternary thin film coatings on Ni-201. J Electrochem Soc. 2017;164(6):C218–223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.