668
Views
10
CrossRef citations to date
0
Altmetric
Reviews

The correlation between structure, multifunctional properties and application of PVD MAX phase coatings. Part I. Texture and room temperature properties

Pages 225-267 | Received 04 Apr 2019, Accepted 21 Apr 2019, Published online: 10 Jun 2019

References

  • Jeitschko W, Nowotny H, Benesovsky F. Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC. Monatsh Chem. 1964;95(1):178–179.
  • Jeitschko W, Nowotny H. Die Kristallstruktur von Ti3SiC2-ein neuer Komplexcarbid-Typ. Monatsh Chem. 1967;98(2):329–337.
  • Nowotny H, Rogl P, Schuster JC. Structural chemistry of complex carbides and related compounds. J Solid State Chem. 1982;44(1):126–133.
  • Barsoum MW. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:201–281.
  • Barsoum MW, El-Raghy T. The MAX phases: unique new carbide and nitride materials. Am Sci. 2001;89:334–343.
  • Barsoum MW. Physical properties of the MAX phases. In: Buschow KHJ, Cahn RW, Flemings MC, editors. Encyclopedia of materials science and technology. Amsterdam: Elsevier; 2006. p. 10388.
  • Eklund P, Beckers M, Jansson U, et al. The M(n+1)AXn phases: materials science and thin-film processing. Thin Solid Films. 2010;518:1851–1878.
  • Wang XH, Zhou YC. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J Mater Sci Technol. 2010;26:385–416.
  • Sun ZM. Progress in research and development on MAX phases: a family of metallic ceramics. Int Mater Rev. 2011;56(3):143–166.
  • Hu C, Zhang H, Li F, et al. New phases’ discovery in MAX family. Int J Refract Met Hard Mater. 2013;36:300–312.
  • Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011;41:195–227.
  • Radovic M, Barsoum WM. MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull. 2013;92(3):20–27.
  • Barsoum MW. MAX Phases - properties of machinable ternary carbides and nitrides. Weinheim: Wiley VCH; 2013.
  • Zhou Y, Sun Y, Chen S, et al. In-situ hot pressing/solid–liquid reaction synthesis of dense titanium silicon carbide bulk ceramics. Mater Res Innov. 1998;2:142–146.
  • Lee DB, Nguyen T, Han J, et al. Oxidation of Cr2AlC at 1300°C in air. Corros Sci. 2007;49(10):3926–3934.
  • Lee DB, Park S. Oxidation of Cr2AlC between 900 and 1200°C in air. Oxid Met. 2007;68(5–6):211–222.
  • Lee DB, Nguyen TD. Cyclic oxidation of Cr2AlC between 1000 and 1300°C in air. J Alloys Compd. 2008;464:434–439.
  • Lee DB, Nguyen T, Park S. Long-time oxidation of Cr2AlC between 700 and 1000°C in air. Oxid Met. 2012;77:275–287.
  • Gupta S, Filimonov D, Zaisev V, et al. Ambient and 550°C tribological behaviour of selected MAX phases against Ni-based superalloys. Wear. 2008;264:270–278.
  • Gupta S, Filimonov D, Palanisamy T, et al. Tribological behaviour of select MAX phases against Al2O3 at elevated temperatures. Wear. 2008;265:560–565.
  • Lin ZJ, Zhou YC, Li MS, et al. In-situ hot pressing/solid–liquid reaction synthesis of bulk Cr2AlC. Zeitschrift Met. 2005;96:291–296.
  • Lin ZJ, Li MS, Wang JY, et al. High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 2007;55:6182–6191.
  • Tian WB, Wang PL, Zhang GJ, et al. Synthesis and thermal and electrical properties of bulk Cr2AlC. Scr Mater. 2006;54:841–846.
  • Tian WB, Wang PL, Kan YM, et al. Phase formation sequence of Cr2AlC ceramics starting from Cr–Al–C powders. Mater Sci Eng A. 2007;443:229–234.
  • Tian WB, Wang PL, Zhang GJ, et al. Effect of composition and processing on phase assembly and mechanical property of Cr2AlC ceramics. Mater Sci Eng A. 2007;454:132–138.
  • Tian WB, Wang PL, Kan YM, et al. Oxidation behaviour of Cr2AlC ceramics at 1100 and 1250 °C. J Mater Sci. 2008;43:2785–2791.
  • Tian WB, Sun Z, Du Y, et al. Synthesis reactions of Cr2AlC from Cr-Al4C3-C by pulse discharge sintering. Mater Lett. 2008;62:3852–3855.
  • Wian T, Vanmeensel K, Wang P, et al. Synthesis and characterization Cr2AlC ceramics prepared by spark plasma sintering. Mater Lett. 2007;61:4442–4445.
  • Xiao L-O, Li S-B, Song G, et al. Synthesis and thermal stability of Cr2AlC. J Eur Ceram Soc. 2011;31:1497–1502.
  • Berger O, Leyens C, Heinze S, et al. Characterisation of Cr-Al-C and Cr-Al-C-Y films synthesized by high power impulse magnetron sputtering at low deposition temperature. Thin Solid Films. 2015;580:6–11.
  • Walter C, Sigumonrong DP, EI-Raghy T, et al. Towards large area deposition of Cr2AlC on steel. Thin Solid Films. 2006;515:389–393.
  • Berger O, Boucher R, Ruhnow M. Part I. Mechanism of oxidation of Cr2AlC films in temperature range 700–1200°C. Surf Eng. 2015;31(5):373–385.
  • Berger O, Boucher R, Ruhnow M. Part II. Oxidation of yttrium doped Cr2AlC films in temperature range between 700–1200°C. Surf Eng. 2015;31(5):386–396.
  • Rawn CJ, Barsoum MW, El-Raghy T, et al. Structure of Ti4AlN3 - a layered Mn+1AXn nitride. Mater Res Bull. 2000;35:1785–1796.
  • Etzkorn J, Ade M, Hillebrecht H. Ta3AlC2 and Ta4AlC3−single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique. Inorg Chem. 2007;46:1410–1418.
  • Tzenov NV, Barsoum MW. Synthesis and characterization of Ti3AlC2. J Am Ceram Soc. 2000;83:825–832.
  • Music D, Ahjua R, Schneider JM. Theoretical study of nitrogen vacancies in Ti4AlN3. Appl Phys Lett. 2005;86:031911.
  • Music D, Riley DP, Schneider JM. Energetics of point defects in TiC. J Eur Ceram Soc. 2009;29:773–777.
  • Du YL, Sun ZM, Hashimoto H, et al. First-Principles study of carbon vacancy in Ta4AlC3. Mater Trans. 2008;49:1934–1936.
  • Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2 at 1000–1400°C in air. Corrs Sci. 2003;45:891–907.
  • Wang XH, Zhou YC. High-temperature oxidation behavior of Ti2AlC in air. Oxid Met. 2003;59:303–320.
  • Lin ZJ, Zhuo MJ, Zhou YC, et al. Interfacial microstructure of Ti3AlC2 and Al2O3 oxide scale. Scr Mater. 2006;54:1815–1820.
  • Wang JY, Zhou YC, Liao T, et al. A first-principles investigation of the phase stability of Ti2AlC with Al vacancies. Scr Mater. 2008;58:227–230.
  • Liao T, Wang JY, Zhou YC. Ab initio modeling of the formation and migration of monovacancies in Ti2AlC. Scr Mater. 2008;59:854–857.
  • Liao T, Wang JY, Zhou YC. First-principles investigation of intrinsic defects and (N, O) impurity atom stimulated Al vacancy in Ti2AlC. Appl Phys Lett. 2008;93:261911.
  • Schuster JC, Nowothy H, Vaccaro C. The ternary systems: Cr-AI-C, V-Al-C, and Ti-AI-C and the behavior of H-phases (M2AlC). J Solid State Chem. 1980;32:213–219.
  • Sun Z, Ahuja R, Schneider JM. Theoretical investigation of the solubility in (MxM´2-x)AlC (M and M´= Ti, V, Cr). Phys Rev B: Condens Matter. 2003;68:224112.
  • Wang JY, Zhou YC. Ab initio elastic stiffness of nano-laminate (MxM´2−x)AlC (M and M´ = Ti, V and Cr) solid solution. J Phys: Condens Matter. 2004;16:2819–2827.
  • Gupta S, Barsoum MW. Synthesis and oxidation of V2AlC and (Ti0.5,V0.5)2AlC in air. J Electrochem Soc. 2004;151:D24–D29.
  • Schneider JM, Sun Z, Music D. Theoretical investigation of the bonding and solubility in Nb2−xWxAlC. J Phys: Condens Matter. 2005;17:6047–6056.
  • Yu W, Li S, Sloof WG. Microstructure and mechanical properties of a Cr2Al(Si)C solid solution. Mat Sci Eng A. 2010;527(21-22):5997–6001.
  • Wilhelmsson O, Eklund P, Högberg H, et al. Structural, electrical and mechanical characterization of magnetron-sputtered V–Ge–C thin films. Acta Mater. 2008;56:2563–2569.
  • Wilhelmsson O, Palmquist J-P, Lewin E, et al. Deposition and characterization of ternary thin films within the Ti–Al–C system by DC magnetron sputtering. J Cryst Growth. 2006;291:290–300.
  • Abdulkadhim AMH. On the stability of MAX phase thin films [PhD thesis]. Aachen: Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Fakultät für Georessourcen und Materialtechnik; 2011, 76.
  • Pietzka MA, Schuster JC. Phase equilibria in the quaternary system Ti-Al-C-N. J Am Ceram Soc. 1996;79:2321–2330.
  • Barsoum MW, Ali M, El-Raghy T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall Mater Trans A. 2000;31:1857–1865.
  • Rosén J, Persson POÅ, Ionescu M, et al.: Oxygen incorporation in Ti2AlC thin films. Appl Phys Lett. 2008;92:064102.
  • Persson POÅ, Rosén J, McKenzie DR, et al. A solid phase reaction between thin films and substrates. J Appl Phys. 2008;103:066102.
  • Shang L, Music D, to Baben M, et al. Phase stability predictions of(Cr1−x,Mx)2(Al1−y,Ay)(C1−z,Xz) (M = Ti, Hf,Zr; A = Si, X = B). J Phys D: Appl Phys. 2014;47:065308.
  • Music D, Sun Z, Voevodin AA, et al. Electronic structure and shearing in nanolaminated ternary carbides. Solid State Commun. 2006;139(4):139–143.
  • Liao T, Wang J, Zhou Y. Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations. Phys Rev B: Condens Matter. 2006;73(21):214109.
  • Sun Z, Music D, Ahuja R, et al. Electronic origin of shearing in M2AC (M = Ti, V, Cr; A = Al, Ga). J Phys: Condens Matter. 2005;17:7169–7176.
  • Salama I, El-Raghy T, Barsoum MW. Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J Alloy Compd. 2002;347:271–278.
  • Kephart JS, Carim AH. Ternary compounds and phase equilibria in Ti-Ge-C and Ti-Ge-B. J Electrochem Soc. 1998;145(9):3253–3258.
  • Cabioch T, Eklund P, Mauchamp V, et al. Tailoring of the thermal expansion of Cr2(Alx,Ge1−x)C phases. J Eur Ceram Soc. 2013;33:897–904.
  • Ganguly A, Zhen T, Barsoum MW. Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x=0.5, 0.75) solid solutions. J Alloy Compd. 2004;376:287–295.
  • Cabioch T, Eklund P, Mauchamp V, et al. Structural investigation of substoichiometry and solid solution effects in Ti2Al(Cx,N1−x)y compounds. J Eur Ceram Soc. 2012;32:1803–1811.
  • Mockute A, Dahlqvist M, Emmerlich J, et al. Synthesis and ab initio calculations of nanolaminated (Cr,Mn)2AlC compounds. Phys Rev B. 2013;87:094113.
  • Mockute A, Persson POÅ, Magnus F, et al. Synthesis and characterization of arc deposited magnetic (Cr,Mn)2AlC MAX phase films. Phys Status Solidi, RRL. 2014;8(5):420–423.
  • Qu L, Bei G, Stelzer B, et al. Synthesis, crystal structure, microstructure and mechanical properties of (Ti1-x Zrx)3SiC2 MAX phase solid solutions. Ceram Int. 2019;45:1400–1408.
  • Abdulkadhim A, to Baben M, Takahashi T, et al. A crystallization kinetics of amorphous Cr2AlC thin films. Surf Coat Technol. 2011;206:599–603.
  • Magnuson M, Mattesini M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films. 2017;621:108–130.
  • Sun Z, Music D, Ahuja R, et al. Bonding and classification of nanolayered ternary carbides. Phys Rev B: Condens Matter. 2004;70(9):092102.
  • Schneider JM, Sun ZM, Mertens R, et al. Ab initio calculations and experimental determination of the structure of Cr2AlC. Solid State Commun. 2004;130:445–449.
  • Music D, Sun Z, Ahuja R, et al. Electronic structure of Sc2AC (A=Al, Ga, In, Tl). Solid State Commun. 2005;133:381–383.
  • Music D, Sun Z, Ahuja R, et al. Coupling in nanolaminated ternary carbides studied by theoretical means: The influence of electronic potential approximations. Phys Rev B: Condens Matter. 2006;73:134117.
  • Music D, Schneider JM. The correlation between the electronic structure and elastic properties of nanolaminates. JOM. 2007;59:60–64.
  • Magnuson M, Palmquist JP, Mattesini M, et al. Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft x-ray emission spectroscopy. Phys Rev B. 2005;72(24):245101.
  • Magnuson M, Wilhelmsson O, Palmquist J-P, et al. Electronic structure and chemical bonding in Ti2AlC investigated by soft X-ray emission spectroscopy. Phys Rev B: Condens Matter. 2006;74:195108.
  • Magnuson M, Mattesini M, Li S, et al. Bonding mechanism in the nitrides Ti2AlN and TiN: an experimental and theoretical investigation. Phys Rev B: Condens Matter. 2007;76:195127.
  • Magnuson M. Electronic structure investigation of MAX-phases by soft X-ray emission spectroscopy. MRS Proc. 2007;1023:1023-JJ09-01, DOI:10.1557/PROC-1023-JJ09-01
  • Magnuson M. Investigation of Ti2AlC and TiC by soft X-ray emission spectroscopy. J Phys Conf Ser. 2007;61(1):760–764.
  • Zhou YC, Wang XH, Sun ZM, et al. Electronic and structural properties of the layered ternary carbide Ti3AlC2. J Mater Chem. 2001;11:2335–2339.
  • Bai Y, He X, Li Y, et al. An ab initio study of the electronic structure and elastic properties of the newly discovered ternary carbide Ti4GaC3. Solid State Commun. 2009;149:2156–2159.
  • He X, Bai Y, Zhu C, et al. General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M = transition metal): A first-principle study. Comp Mater Sci. 2010;49:691–698.
  • Zhou YC, Sun ZM, Wang XH, et al. Ab initio geometry optimization and ground state properties of layered ternary carbides Ti3MC2 (M = Al, Si and Ge). J Phys: Condens Matter. 2001;13:10001–10010.
  • Sun ZM, Zhou CY. Ab initio calculation of titanium silicon carbide. Phys Rev B. 1999;60:1441–1443.
  • Magnuson M, Mattesini M, van Nong N, et al. Electronic-structure origin of the anisotropic thermopower of nanolaminated Ti3SiC2 determined by polarized X-ray spectroscopy and Seebeck measurements. Phys Rev B. 2012;85:195134.
  • Nasir MT, Islam AKMA. MAX phases Nb2AC (A = S, Sn): an ab initio study. Comp Mater Sci. 2012;65:365–371.
  • Mattesini M, Magnuson M. Electronic correlation effects in the Cr2GeCMn+1AXn phase. J Phys: Condens Matter. 2013;25:035601.
  • Ramzan M, Lebègue S, Ahuja R. Hybrid exchange-correlation functional study of the structural, electronic, and mechanical properties of the MAX phases. Appl Phys Lett. 2011;98:021902.
  • Sun W, Luo W, Ahuja R. Role of correlation and relativistic effects in MAX phases. J Mater Sci. 2012;47:7615–7620.
  • Hug G, Jaouen M, Barsoum MW. X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structures of Ti2AlC, Ti2AlN, Nb2AlC and (Ti0.5,Nb0.5)2AlC. Phys Rev B. 2005;71, 024105-12.
  • Cui S, Wei D, Hub H, et al. First-principles study of the structural and elastic properties of Cr2AlX (X=N,C) compounds. J Solid State Chem. 2012;191:147–152.
  • Jürgens D, Uhrmacher M, Gehrke H-G, et al. Electric field gradients at 111In/111Cd probe atoms on A-sites in 211-MAX phases. J Phys: Condens Matter. 2011;23:505501–505519.
  • Dahlqvist M, Alling B, Abrikosov IA, et al. Magnetic nanoscale laminates with tunable exchange coupling from first principles. Phys Rev B. 2011;84:220403.
  • Mauchmap V, Hug G, Bugnet M, et al. Anisotropy of Ti2AlN dielectric response investigated by ab initio calculations and electron energy-loss spectroscopy. Phys Rev B. 2010;81:035109.
  • Mauchamp V, Yu W, Gence L, et al. Anisotropy of the resistivity and charge-carrier sign in nanolaminated Ti2AlC: experiment and ab initio calculations. Phys Rev B. 2013;87:235105.
  • Magnuson M, Hague CF. Determination of the refractive index at soft X-ray resonances. J Electron Spectrosc. 2004;137-140:519–522.
  • Magnuson M, Wilhelmsson O, Mattesini M, et al. Anisotropy in the electronic structure of V2GeC investigated by soft X-ray emission spectroscopy and first-principles theory. Phys Rev B. 2008;78:035117.
  • Magnuson M, Mattesini M, Bugnet M, et al. The origin of anisotropy and high density of states in the electronic structure of Cr2GeC by means of polarized soft X ray spectroscopy and ab initio calculations. J Phys: Condens Matter. 2015;27:415501.
  • Cover MF, Warschkow O, Bilek MMM, et al. A comprehensive survey of M2AX phase elastic properties. J Phys Condens Matter. 2009;21:305403.
  • Keast VJ, Harris S, Smith DK. Prediction of the stability of the Mn+1AXn phases from first principles. Phys Rev B. 2009;80:214113–214117.
  • Dahlqvist M, Alling B, Rosén J. Stability trends of MAX phases from first principles. Phys Rev B. 2010;81:220102(R).
  • Wang J, Zhou Y. Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu Rev Mater Res. 2009;39:415–443.
  • Etzkorn J, Ade M, Kotzott D, et al. Ti2GaC, Ti4GaC3 and Cr2GaC-synthesis, crystal growth and structure analysis of Ga-containing MAX-phases Mn+1GaCn with M = Ti, Cr and n = 1, 3. J Solid State Chem. 2009;182:995–1002.
  • Ashton M, Hennig RG, Broderick SR, et al. Computational discovery of stable M2AX phases. Phys Rev B. 2016;94:054116.
  • Hu CF, Li FZ, Zhang J, et al. Nb4AlC3, a new compound belonging to the MAX phases. Scr Mater. 2007;57:893–896.
  • Racault C, Langlais F, Naslain R. Solid state synthesis and characterization of the ternary phase Ti3SiC2. J Mater Sci. 1994;29:3384–3392.
  • Emmerlich J, Music D, Ekund P, et al. Thermal stability of Ti3SiC2 thin films. Acta Mater. 2007;55:1479–1488.
  • Eklund P, Virojanadara C, Emmerlich J, et al. Photoemission studies of Ti3SiC2 and nanocrystalline-TiC/amorphous-SiC nanocomposite thin films. Phys Rev B: Condens Matter. 2006;74:045417.
  • Radhakrishnan R, Williams JJ, Akinc M. Synthesis and high-temperature stability of Ti3SiC2. J Alloy Compd. 1999;285:85–88.
  • Schroeter O. Herstellung und Charakterisierung von PVD-Schichten auf Basis der Cr2AlC–MAX-Phase [PhD thesis]. Cottbus: Brandenburgische Technische Universität Cottbus (BTU), Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen; 2011, 278.
  • Lai C-C, Fashandi H, Lu J, et al. Phase formation of nanolaminated Mo2AuC and Mo2(Au1−xGax)2C by a substitutional reaction within Au-capped Mo2GaC and Mo2Ga2C thin films. Nanoscale. 2017;9:17681–17687.
  • Lai C-C, Tao Q, Fashandi H, et al. Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC. APL Mater. 2018;6:026104.
  • Fashandi H, Lai C-C, Dahlqvist M, et al. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chem Commun. 2017;53:9554–9557.
  • Fashandi H, Dahlqvist M, Lu J, et al. Synthesis of Ti3AuC2, Ti3Au2C2, and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature stable Ohmic contacts to SiC. Nat Mater. 2017;16:814–818.
  • Li SB, Yu WB, Zhai HX, et al. Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics. J Eur Ceram Soc. 2011;31:217–224.
  • Murugaiah A, Souchet A, El-Raghy T, et al. Tape casting, pressureless sintering, and grain growth in Ti3SiC2 compacts. J Am Ceram Soc. 2004;87:550–556.
  • Sun ZM, Yang SL, Hashimoto H, et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders. Mater Trans. 2004;45:373–375.
  • Zhou AG, Barsoum MW, Basu S, et al. Incipient and regular kink bands in fully dense and 10 vol.% porous Ti2AlC. Acta Mater 2006;54:1631–1639.
  • Amini S, Barsoum MW, El-Raghy T. Synthesis and mechanical properties of fully dense Ti2SC. J Am Ceram Soc. 2007;90:3953–3958.
  • Hashimoto S, Takeuchi M, Inoue K, et al. Pressureless sintering and mechanical properties of titanium aluminum carbide. Mater Lett. 2008;62:1480–1483.
  • Panigrahi BB, Chu M-C, Balakrishnan A, et al. Synthesis and pressureless sintering of Ti3SiC2 powder. J Mater Res. 2009;24:487–492.
  • Sun ZM, Zou Y, Tada S, et al. Effect of Al addition onpressureless reactive sintering of Ti3SiC2. Scr Mater. 2006;55:1011–1014.
  • Wang XH, Zhou YC. Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J Mater Chem. 2002;12:455–460.
  • Wang XH, Zhou YC. Solid-liquid reaction synthesis and simultaneous densification of polycrystalline Ti2AlC. Zeitschrift Met. 2002;93:66–71.
  • Luo YM, Zheng ZM, Mei XN, et al. Growth mechanism of Ti3SiC2 single crystals by in-situ reaction of polycarbosilane and metal titanium with CaF2 additive. J Cryst Growth. 2008;310:3372–3375.
  • Riley DP, Kisi EH, Hansen TC, et al. Self-propagating high-temperature synthesis of Ti3SiC2: I, ultra-high-speed neutron diffraction study of the reaction mechanism. J Am Ceram Soc. 2002;85:2417–2424.
  • Riley DP, Kisi EH, Hansen TC. Self-propagating high-temperature synthesis of Ti3SiC2: II. Kinetics of ultra-high-speed reactions from in situ neutron diffraction. J Am Ceram Soc. 2008;91:3207–3210.
  • Yeh CL, Shen YG. Effects of SiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis. J Alloy Compd. 2008;461:654–660.
  • Rutkowski P, Huebner J, Kata D, et al. Laser initiated Ti3SiC2 powder and coating synthesis. Ceram Int. 2018;44:10883–10890.
  • Goc K, Prendota W, Chlubny L, et al. Structure, morphology and electrical transport properties of the Ti3AlC2 materials. Ceram Int. 2018;44(15):18322–18328.
  • Tian W, Vanmeensel K, Wang P, et al. Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering. Mater Lett. 2007;61(22):4442–4445.
  • Zhang HB, Hu CF, Sato K, et al. Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties. J Eur Ceram Soc. 2014;35:393–397.
  • Hu C, Sakka Y, Tanaka H, et al. Fabrication of textured Nb4AlC3 ceramic by slip casting in a strong magnetic field and spark plasma sintering. J Am Ceram Soc. 2011;94:410–415.
  • Hu C, Sakka Y, Nishimura T, et al. Physical and mechanical properties of highly textured polycrystalline Nb4AlC3 ceramic. Sci Technol Adv Mat. 2011;12:44603–44608.
  • Hu C, Sakka Y, Grasso S, et al. Tailoring Ti3SiC2 ceramic via a strong magnetic field alignment method followed by spark plasma sintering. J Am Ceram Soc. 2011;94:742–748.
  • Xu L, Zhu D, Liu Y, et al. Effect of texture on oxidation resistance of Ti3AlC2. J Eur Caram Soc. 2017;38(10):3417–3423.
  • Zhang ZF, Sun ZM, Hashimoto H. Rapid synthesis of ternary carbide Ti3SiC2 through pulse- discharge sintering technique from Ti/Si/TiC powders. Metall Mater Trans A. 2002;33:3321–3328.
  • Konoplyuk S, Abe T, Uchimoto T, et al. Synthesis of Ti3SiC2/TiC composites from TiH2/SiC/TiC powders. Mater Lett. 2005;59:2342–2346.
  • Konoplyuk S, Abe T, Uchimoto T, et al. Ti3SiC2/TiC composites prepared by PDS. J Mater Sci. 2005;40:3409–3413.
  • Zou Y, Sun ZM, Tada S, et al. Synthesis reactions for Ti3SiC2 through pulse discharge sintering TiH2/Si/TiC powder mixture. Mater Res Bull. 2008;43:968–975.
  • Barsoum MW, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc. 1996;79(7):1953–1956.
  • Tian WB, Sun Z, Du Y, et al. Mechanical properties of pulse discharge sintered Cr2AlC at 25–1000 °C. Mater Lett. 2009;63(8):670–672.
  • Yin X, Travitzky N, Greil P. Three-dimensional printing of nanolaminated Ti3AlC2 toughened TiAl3–Al2O3 composites. J Am Ceram Soc. 2007;90:2128–2134.
  • Riley DP, Kisi EH. The design of crystalline precursors for the synthesis of Mn-1AXn phases and their application to Ti3AlC2. J Am Ceram Soc. 2007;90:2231–2235.
  • El-Raghy T, Barsoum MW. Processing and mechanical properties of Ti3SiC2: I. Reaction path and microstructure evolution. J Am Ceram Soc. 1999;82:2849–2854.
  • Luo YM, Pan W, Li SQ, et al. Synthesis of high-purity Ti3SiC2 polycrystals by hot-pressing of the elemental powders. Mater Lett. 2002;52:245–247.
  • Amini S, Zhou A, Gupta S, et al. Synthesis and elastic and mechanical properties of Cr2GeC. J Mater Res. 2008;23:2157–2165.
  • Hu C, He L, Zhang J, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesised by an in situ reaction/hot pressing method. J Eur Ceram Soc. 2008;28:1679–1685.
  • Emmerlich J, Högberg H, Sasvari S, et al. Growth of Ti3SiC2 thin films by elemental target magnetron sputtering. J Appl Phys. 2004;96:4817–4826.
  • Mercier F, Ouisse T, Chaussende D. Morphological instabilities induced by foreign particles and Ehrlich-Schwoebel effect during the two-dimensional growth of crystalline Ti3SiC2. Phys Rev B. 2011;83:075411.
  • Mercier F, Chaix-Pluchery O, Ouisse T, et al. Raman scattering from Ti3SiC2 single crystals. Appl Phys Lett. 2011;98:081912.
  • Ouisse T, Sarigiannidou E, Chaix-Pluchery O, et al. High temperature solution growth and characterization of Cr2AlC single crystals. J Cryst Growth. 2013;384:88–95.
  • Li JJ, Qian YH, Niu D, et al. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment. Appl Surf Sci. 2012;263:457–464.
  • Rosén J, Ryves L, Persson POÅ, et al. Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc. J Appl Phys. 2007;101:056101.
  • Goto T, Hirai T. Chemically vapor deposited Ti3SiC2. Mater Res Bull. 1987;22:1195–1201.
  • Racault C, Langlais F, Naslain R, et al. On the chemical vapour deposition of Ti3SiC2 from TiCI4-SiCI4-CH4-H2 gas mixtures. Part II. An experimental approach. J Mater Sci. 1994;29:3941–3948.
  • Fakih H, Jacques S, Bernet M-P, et al. The growth of Ti3SiC2 coatings onto SiC by reactive chemical vapor deposition using H2 and TiCl4. Surf Coat Technol. 2006;201:3748–3755.
  • Pasumarthi V, Chen Y, Bakshi SR, et al. Reaction synthesis of Ti3SiC2 phase in plasma sprayed coating. J Alloy Compd. 2009;484(1–2):113–117.
  • Frodelius J. Thick and thin Ti2AlC coatings [PhD thesis]. Linköping: Linköping University, 2010.
  • Jiang J, Fasth A, Nylén P, et al. Microindentation and inverse analysis to characterize elastic-plastic properties for thermal sprayed Ti2AlC and NiCoCrAlY. J Therm Spray Technol. 2009;18:194–200.
  • Trache R, Puschmann R, Leyens C, et al. Thermally Sprayed Ti3SiC2 and Ti2AlC MAX-phase coatings. Int. Thermal Spray Conf., 13th–15th May 2013, Conference Proceedings, 2013, Busan, Republic of Korea.
  • Frodelius J, Sonestedt M, Björklund S, et al. Ti2AlC coatings deposited by high velocity oxy-fuel spraying. Surf Coat Technol. 2008;202:5976–5981.
  • Tsukimoto S, Nitta K, Sakai T, et al. Correlation between the electrical properties and the interfacial microstructures of TiAl-based ohmic contacts to p-type 4H-SiC. J Electron Mater. 2004;33:460–466.
  • Wang ZC, Tsukimoto S, Saito M, et al. Sic/Ti3SiC2 interface: atomic structure, energetics, and bonding. Phys Rev B: Condens Matter. 2009;79:045318.
  • Mertens R, Sun ZM, Music D, et al. Effect of the composition on the structure of Cr-Al-C investigated by combinatorial thin film synthesis and ab initio calculations. Adv Eng Mater. 2004;6:903–907.
  • Persson POÅ, Kodambaka S, Petrov I, et al. Epitaxial Ti2AlN (0001) thin film deposition by dual-target reactive magnetron sputtering. Acta Mater. 2007;55:4401–4407.
  • Högberg H, Sasvári S, Persson POÅ, et al. Growth of Ti3SiC2 thin films by elemental taget magnetron sputtering. J Appl Phys. 2004;96:4817–4826.
  • Högberg H, Hultman L, Emmerlich J, et al. Growth and characterization of MAX-phase thin films. Surf Coat Technol. 2005;193(1–3):6–10.
  • Palmquist J-P, Jansson U, Seppänen T, et al. Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl Phys Lett. 2002;81:835–837.
  • Palmquist J-P, Li S, Persson POÅ, et al. Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations. Phys Rev B: Condens Matter. 2004;70B:165401-1–165401-13.
  • Eklund P, Murugaiah A, Emmerlich J, et al. Homoepitaxial growth of Ti–Si–C MAX-phase thin films on bulk Ti3SiC2 substrates. J Cryst Growth. 2007;304:264–269.
  • Wilhelmsson O, Palmquist JP, Nyberg T, et al. Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering. Appl Phys Lett. 2004;85:1066–1068.
  • Stansky DV, Kiryukhantsev-Korneev P, Sheveyko AN, et al. Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of MAX-phase Ti2–xCrxAlC targets. Surf Coat Technol. 2009;203:3595–3609.
  • Gulbinski W, Gilewicz A, Suszko T, et al. Ti-Si-C sputter deposited thin film coatings. Surf Coat Technol. 2004;180/181:341–346.
  • Wang QM, Flores Renteria A, Schroeter O, et al. Fabrication and oxidation behavior of Cr2AlC coatings on Ti6242 alloy. Surf Coat Technol. 2010;204:2343–2352.
  • Wang QM, Mykhaylonka R, Flores Renteria A, et al. Improving the high-temperature oxidation resistance of a [beta]-[gamma] TiAl alloy by a Cr2AlC coating. Corros Sci. 2010;52(11):3793–3802.
  • Richter A. Synthese und Charakterisierung von lichtbogenverdampften Cr-Al-C Schichten, in Fachbereich Physikalische Technik, 2008, Westsachsische Hochschule Zwickau (FH): Zwickau. p. 64.
  • Li JJ, Li MS, Xiang HM, et al. Short-term oxidation resistance and degradation of Cr2AlC coating on M38G superalloy at 900-1100°C. Corros Sci. 2011;53:3813–3820.
  • Hu JJ, Bultman JE, Patton S, et al. Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films. Tribol Lett. 2004;16:113–122.
  • Hu JJ, Zabinski JS. Reply to the comment on ‘Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films’. Tribol Lett. 2004;17:979–982.
  • Eklund P, Palmquist JP, Wilhelmsson O, et al. Comment on ‘Pulsed laser deposition and properties of Mn+1AXn phase formulated Ti3SiC2 thin films’. Tribol Lett. 2004;17:977–978.
  • Lange C, Barsoum MW, Schaaf P. Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition. Appl Surf Sci. 2007;254:1232–1235.
  • Alami J, Persson POÅ, Music D, et al. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. J Vac Sci Technol A. 2005;23(2):278–280.
  • Sarakinos K, Alami J, Konstantinidis S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf Coat Technol. 2010;204(11):1661–1684.
  • Ehiasarian AP, Wen JG, Petrov I. Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion. J Appl Phys. 2007;101, 054301-1.
  • Anders A. Fundamentals of pulsed plasmas for materials processing. Surf Coat Technol. 2004;183(2–3):301–311.
  • Anders A. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films. 2010;518(15):4087–4090.
  • Mattox DM. Atomistic film growth and some growthrelated film properties. In: Handbook of physical vapor deposition (PVD) processing – film formation, adhesion, surface preparation and contamination control. Westwood (NJ): Noyes Publications, 1998, 472–568.
  • Helmersson U, Lattemann M, Bohlmark J, et al. Ionized physical vapor deposition (IPVD): a review of technology and applications. Thin Solid Films. 2006;513(1–2):1–24.
  • Burcalova K, Hecimovic A, Ehiasarian AP. Ion energy distributions and efficiency of sputtering process in HIPIMS system. J Phys D: Appl Phys. 2008;41:115306.
  • Song GM, Pei YT, Sloof WG, et al. Early stages of oxidation of Ti3AlC2 ceramics. Mater Chem Phys. 2008;112:762–768.
  • Song GM, Pei YT, Sloof WG, et al. Oxidation-induced crack healing in Ti3AlC2 ceramics. Scr Mater. 2008;58:13–16.
  • Zhou YC, Sun ZM. Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics. Mater Res Innov. 1999;2:360–363.
  • Gao NF, Miyamoto Y, Zhang D. Dense Ti3SiC2 prepared by reactive HIP. J Mater Sci. 1999;34:4385–4392.
  • Zhou YC, Dong HY, Yu BH. Development of two-dimensional titanium tin carbide (Ti2SnC) plates based on the electronic structure investigation. Mater Res Innov. 2000;4(1):36–41.
  • Li S-B, Bei G-P, Zhai H-X, et al. Bimodal microstructure and reaction mechanism of Ti2SnC synthesized by a high-temperature reaction using Ti/Sn/C and Ti/Sn/TiC powder compacts. J Am Ceram Soc. 2006;89(12):3617–3623.
  • Gonzalez-Julian J, Onrubia S, Bram M, et al. Effect of sintering method on the microstructure of pure Cr2AlC MAX phase ceramics. J Ceram Soc Jpn. 2016;124(4):415–420.
  • Barsoum MW, El-Raghy T. Room temperature ductile carbides. Mettal Mater Trans. 1999;30A:363–369.
  • Barsoum MW, Farber L, El-Raghy T. Dislocations, kink bands and room-temperature plasticity of Ti3SiC2. Mettal Mater Trans. 1999;30A:1727–1738.
  • Hu C, Sakka Y, Grasso S, et al. Sell-like nanolayered Nb3AlC4 ceramic with high strength and toughness. Scr Mater. 2011;64:765–768.
  • Lapauw T, Vanmeensel K, Lambrinou K, et al. A new method to texture dense Mn+1AXn ceramics by spark plasma. Scr Mater. 2016;111:98–101.
  • Chen X, Bei G. Toughening mechanisms in nanolayered MAX phase ceramics – a review. Materials. 2017;10(4):366.
  • Bobzin K. Oberflächentechnik für den Maschinenbau. Weinheim: WILEY-VGH Verlag GmbH&Co.KGaA; 2013.
  • Thompson MW. II. The energy spectrum of ejected atoms during the high energy sputtering of gold. Philos Mag. 1968;18:377–414.
  • Ono T, Kenmotsu T, Muranoto T. Simulation of the sputtering process. In: D Depla, S Mahieu, editors. Reactive sputter deposition. Berlin: Springer; 2008. p. 1–39.
  • Eklund P, Beckers M, Frodelius J, et al. Magnetron sputtering of thin films from a compound target. J Vac Sci Technol A. 2007;25:1381–1388.
  • Frodelius J, Eklund P, Beckers M, et al. Sputter deposition from a Ti2AlC target: process characterization and conditions for growth of Ti2AlC. Thin Solid Films. 2010;518:1621–1626.
  • Ziegler JF, Biersack JP, Littmark U. The stopping and range of ions in solids. New York (NY): Pergamon Press; 1985.
  • Jacobs DC. The role of internal energy and approach geometry in molecule/surface reactive scattering. J Phys Condens Matter. 1995;7:1023–1045.
  • Hanley L, Sinnott SB. The growth and modification of materials via ion-surface processing. Surf Sci. 2002;500:500–522.
  • Ohring M. Material science of thin films, deposition and structure. San Diego (CA): Academic Press; 1991; 794.
  • Movchan BA, Demchishin AA. Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide. Phys Met Metallogr. 1969;28:83–90.
  • Thornton JA. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol. 1974;11(4):666–670.
  • Thornton JA. Influence of substrate temperature and deposition rate on structure of thick Cu coating. J Vac Sci Technol. 1975;12:830–835.
  • Thornton JA. High rate thick film growth. Ann Rev Mater Sci. 1977;7:239–260.
  • Messier R, Giri AP, A R. Roy: Revised structure zone model for thin film physical structure. J Vac Sci Technol A. 1984;2:500–504.
  • Rickerby DS, Burnett PJ. Correlation of process and system parameters with structure and properties of physically vapour- deposited hard coatings. Thin Solid Films. 1988;157(2):195–222.
  • Iskandar MR. Growth mechanisms and microstructure evolution of MAX phases thin films and of oxide scales on high temperature materials [Dissertation]. Aachen: Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Fakultät für Georessourcen and Materialtechnik; 2011, 177.
  • Naveed M, Obrosov A, Zak A, et al. Sputtering power effects on growth and mechanical properties of Cr2AlC MAX phase coatings. Metals. 2016;6:265–276.
  • Obrosov A, Gulyaev R, Zak A, et al. Chemical and morphological characterization of magnetron sputtered at different bias voltages Cr-Al-C coatings. Materials. 2017;10:156–171.
  • Kouznetsov V, Macak K, Schneider JM, et al. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf Coat Technol. 1999;122(2–3):290–293.
  • Karkari SK, Backer H, Forder D, et al. A technique for obtaining time- and energy-resolved mass spectroscopic measurements on pulsed plasmas. Meas Sci Technol. 2002;13(9):1431–1436.
  • Gudmundsson JT, Alami J, Helmersson U. Spatial and temporal behavior of the plasma parameters in a pulsed magnetron discharge. Surf Coat Technol. 2002;161(2–3):249–256.
  • Bohlmark J, Lattemann M, Gudmundsson JT, et al. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge. Thin Solid Films. 2006;515(4):1522–1526.
  • Egawa M, Miura KI, Yokoi M, et al. Effects of substrate bias voltage on projection growth in chromium nitride films deposited by arc ion plating. Surf Coat Technol. 2007;201(9–11):4873–4878.
  • Brenning N, Axnas I, Raadu MA, et al. A bulk plasma model for dc and HiPIMS magnetrons. Plasma Sources Sci Technol. 2008;17(4):045009.
  • Lundin D. Plasma properties in high power impulse magnetron sputtering. Linkoping: Linkoping University; Plasma & Coatings Physics Division, Department of Physics, Chemistry and Biology; 2008, p. 60.
  • Lin J, Moore JJ, Sproul WD, et al. Rees: Ion energy and mass distributions of the plasma during modulated pulse power magnetron sputtering. Surf Coat Technol. 2009;203(24):3676–3685.
  • Liu B, Wang JY, Zhang J, et al. Theoretical investigation of A-element atom diffusion in Ti2AC (A=Sn, Ga, Cd. In, and Pb). Appl Phys Lett. 2009;94:181906.
  • Holm B, Ahuja R, Li S, et al. Theory of the ternary layered system Ti–Al–N. J Appl Phys. 2002;91:9874–9877.
  • Beckers M, Schell N, Martins RMS, et al. Nucleation and growth of thin films deposited by reactive magnetron sputtering onto MgO(111). J Appl Phys. 2007;102:074916.
  • Högberg H, Eklund P, Emmerlich J, et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering. J Mater Res. 2005;20(4):779–782.
  • Li JJ, Hu LF, Li FZ, et al. Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 and 500°C. Surf Coat Technol. 2010;204:3838–3845.
  • Spies L, Teichert G, Schwarzer R, et al. Moderne Röntgenbeugung - Röntgendiffraktometrie für Materialwissenschaftler. Physiker und Chemiker, 2. Auflage ed. Wiesbaden: Vieweg+Teubner Verlag; 2009.
  • Rueß H, to Baben M, Mráz S, et al. HPPMS deposition from composite targets: effect of two orders of magnitude target power density changes on the composition of sputtered Cr-Al-C thin films. Vacuum. 2017;145:285–289.
  • Dahlqvist M, Aling B, Rosen J. Correlation between magnetic state and bulk modulus of Cr2AlC. J Appl Phys. 2013;113:216103.
  • Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater. 2013;23:2185–2192.
  • Zhou W, Liu L, Wu P. First-principles study of structural, thermodynamic, elastic, and magnetic properties of Cr2GeC under pressure and temperature. J Appl Phys. 2009;106:033501.
  • Finkel P, Barsoum MW, Hettinger JD, et al. Low-temperature transport properties of nanolaminates Ti3AlC2 and Ti4AlN3. Phys Rev B: Condens Matter. 2003;67:235108.
  • Lin S, Tong P, Wang BS, et al. Magnetic and electrical/ thermal transport properties of Mn-doped Mn+1AXn phase compounds Cr2-xMnxGaC (0<x<1). J Appl Phys. 2013;113:053502.
  • Jaouen M, Chartier P, Cabioch T, et al. Invar like behavior of the Cr2AlC MAX phase at low temperature. J Am Ceram Soc. 2013;96:3872–3876.
  • Jaouen M, Bugnet M, Jaouen N, et al. Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C. J Phys Condens Matter. 2014;26:176002.
  • Lue CS, Lin JY, Xie BX. NMR study of the ternary carbides M2AlC (M=Ti,V,Cr). Phys Rev B: Condens Matter. 2006;73:035125.
  • Liu Z, Waki T, Tabata Y, et al. Mn-doping-induced itinerant-electron ferromagnetism in Cr2GeC. Phys Rev B. 2014;89:054435.
  • Tao QZ, Hu CF, Lin S, et al. Barsoum: Coexistence of ferromagnetic and a re-entrant cluster glass state in the layered quaternary (Cr1-x,Mnx)2GeC. Mater Res Lett. 2014;2(4):192–198.
  • Petruhins A, Ingason AS, Lu J, et al. Synthesis and characterization of magnetic (Cr0.5Mn0.5)2GaC. J Mater Sci. 2015;50:4495–4502.
  • Salikhov R, Semisalova AS, Petruhins A, et al. Magnetic anisotropy in the (Cr0.5Mn0.5)2GaC MAX phase. Mater Res Lett. 2015;3:156–160.
  • Meshkian R, Ingason AS, Arnalds UB, et al. A magnetic atomic laminate from thin film synthesis: (Mo0.5Mn0.5)2GaC. APL Mater. 2015;3:076102.
  • Salikhov R, Meshkian R, Weller D, et al. Magnetic properties of nanolaminated (Mo0.5Mn0.5)2GaC MAX phase. J Appl Phys. 2017;121:163904.
  • Ingason AS, Dahlqvist M, Rosén J. Magnetic MAX phases from theory and experiments; a review. J Phys Condens Matter. 2016;28:433003.
  • Dahlqvist M, Ingason AS, Alling B, et al. Magnetically driven anisotropic structural changes in the atomic laminate Mn2GaC. Phys Rev B. 2016;93:014410.
  • Thore A, Dahlqvist M, Alling B, et al. Magnetic exchange interactions and critical temperature of the nanolaminate Mn2GaC from first-principles supercell methods. Phys Rev B. 2016;93:054432.
  • Boucher R, Berger O, Leyens C. Magnetic properties of bulk and thin film Cr-Al-C compounds. Surf Eng. 2016;32(3):172–177.
  • Liu Z, Takao K, Waki T, et al. Electron correlation in Pauli paramagnetic Cr2AlC, Cr2GaC and Cr2GeC. J Phys Conf Ser. 2017;868:012016.
  • Hamm CM, Bocarsly JD, Seward G, et al. Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC. J Mater Chem C. 2017;5:5700–5708.
  • Ramzan M, Lebègue S, Ahuja R. Correlation effects in the electronic and structural properties of Cr2AlC. Phys Status Solidi RRL. 2011;5(3):122–124.
  • Ingason AS, Petruhins A, Rosén J. Toward structural optimization of MAX phases as epitaxial thin films. Mater Res Lett. 2016;4(3):152–160.
  • Ingason AS, Petruhins A, Dahlqvist M, et al. A nanolaminated magnetic phase: Mn2GaC. Mater Res Lett. 2014;2:89–93.
  • Ingason AS, Palsson GK, Dahlqvist M, et al. Long-range antiferromagnetic order in epitaxial Mn2GaC thin films from neutron reflectometry. Phys Rev B. 2016;94:024416.
  • Novoselova JP, Petruhins A, Wiedwald U, et al. Large uniaxial magnetostriction with sign inversion at the first order phase transition in the nanolaminated Mn2GaC MAX phase. Sci Rep. 2018;8:2637.
  • Tao Q, Salikhov R, Mockute A, et al. Thin film synthesis and characterization of a chemically ordered magnetic nanolaminate (V,Mn)3GaC2. APL Mater. 2016;4:086109.
  • Tao Q, Lu J, Dahlqvist M, et al. Atomically layered and ordered rare-earth i-MAX phases: a new class of magnetic quaternary compounds. Chem Mater. 2019. Just Accepted Manuscript. doi:10.1021/acs.chemmater.8b05298.
  • Tao Q, Dahlqvist M, Lu J, et al. Two dimensional Mo1.33CMXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat Comm. 2017;8:14949.
  • Dahlqvist M, Lu J, Meshkian R, et al. Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. Sci Adv. 2017;3(7):e1700642.
  • Meshkian R, Dahlqvist M, Lu J, et al. W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv Mater. 2018;30(21):1706409.
  • Hug G. Full-potential electronic structure of Ti2AlC and Ti2AlN. Phys Rev. 2006;B 74:184113.
  • Haddad N, Garcia-Laurel E, Hultman L, et al. Dielectric properties of Ti2AlC and Ti2AlN MAX phases: The conductivity anisotropy. J Appl Phys. 2008;104:023531.
  • Mauchamp V, Bugnet M, Chartier P, et al. Interplay between many-body effects and charge transfers in Cr2AlC bulk plasmon excitation. Phys Rev B. 2012;86:125109.
  • Hettinger JD, Lofland SE, Finkel P, et al. Electrical transport, thermal transport, and elastic properties of M2AlC (M=Ti, Cr, Nb, and V). Phys Rev. 2005;B72:115120.
  • Zhou YC, Wan DT, Bao YW, et al. In situ processing and high temperature properties of Ti2Si(Al)C2/SiC composites. Int J Appl Ceram Soc. 2006;3:47–54.
  • Barsoum MW, Salama I, El-Raghy T, et al. Thermal and electrical properties of Nb2AlC, (Ti,Nb)2AlC and Ti2AlC. Metall Mater Trans A. 2002;33(9):2775–2779.
  • Chaput L, Hug G, Pécheur P, et al. Thermopower of the 312 MAX phases Ti3SiC2, Ti3GeC2, and Ti3AlC2. Phys Rev. 2007;B 75:35107.
  • Yoo H-I, Barsoum MW, El-Raghy T. Materials science: Ti3SiC2 has negligible thermopower. Nature. 2000;407:581.
  • Ouisse T, Shi L, Piot BA, et al. Magnetotransport properties of nearly-free electrons in two-dimensional hexagonal metals and application to the Mn+1AXn phases. Phys Rev B. 2015;92:045133.
  • Ouisse T, Barsoum MW. Magnetotransport in the MAX phases and their 2D derivatives: MXenes. Mater Res Lett. 2017;5(6):365–378.
  • Scabarozi T, Ganguly A, Hettinger JD, et al. Electronic and thermal properties of Ti3Al(C0.5,N0.5)2, Ti2Al(C0.5,N0.5) and Ti2AlN. J Appl Phys. 2008;104:073713.
  • Du Y, Schuster J, Seifert H, et al. Experimental investigation and thermodynamic calculation of the titanium-silicon-carbide system. J Am Ceram Soc. 2000;83:197–203.
  • Barsoum MW, El-Raghy T, Rawn CJ, et al. Thermal properties of Ti3SiC2. J Phys Chem Solids. 1999;60(4):429–439.
  • Wang J, Wang J, Li A, et al. Theoretical study on the mechanism of anisotropic thermal properties of Ti2AlC and Cr2AlC. J Am Ceram Soc. 2014;97(4):1202–1208.
  • Li S, Ahuja R, Barsoum MW, et al. Optical properties of Ti3SiC2 and Ti4AlN3. Appl Phys Lett. 2008;92(22DOI:10.1063/1.2938862
  • Schultz RA, Bradt RC. Cleavage of ceramic and mineral single crystals. In: R.C.Brandt, D.P.H. Hasselman, D.Munz, M.Sakai and V.Ya Shevchenko, editors Fracture mechanics of ceramics: fracture fundamentals, high-temperature, deformation, damage, and design. Vol. 10. New York (NY): Plenum Press; 1992.
  • Li N, Sakidja R, Ching W-Y. Oxidation of Cr2AlC (0001): Insights from ab initio calculations. JOM. 2013;65:1487–1491.
  • Sun Z, Ahuja R. Ab initio study of the Cr2AlC (0001) surface. Appl Phys Lett. 2006;88:161913-1–161913-3.
  • Wang J, Zhou Y. Stable M2AlC(0001) surfaces (M=Ti, V and Cr) by first-principle investigation. J Phys Condens Matter. 2008;20:225006-1–225006-11.
  • Amer M, Barsoum MW, El-Raghy T, et al. Raman spectrum of Ti3SiC2. J Appl Phys. 1998;84:5817–5819.
  • Spanier JE, Gupta S, Amer M, et al. First-order Raman scattering from the Mn+1AXn phases. Phys Rev B: Condens Matter. 2005;71:12103.
  • Wang J, Zhou Y, Lin Z, et al. Raman active modes and heat capacities of Ti2AlC and Cr2AlC ceramics: first principles and experimental investigations. Appl Phys Lett. 2005;86:101902.
  • Leaffer OD, Gupta S, Barsoum MW, et al. On the Raman scattering from selected M2AC compounds. J Mater Res. 2007;22:2651–2654.
  • Sun Z, Li S, Ahuja R, et al. Calculated elastic properties of M2AlC (M = Ti, V, Cr, Nb and Ta). Solid State Commun. 2004;129:589–592.
  • Hug G. Electronic structures of and composition gaps among the ternary carbides Ti2MC. Phys Rev B. 2006;74:184113.
  • Sun Z, Ahuja R, Li S, et al. Structure and bulk modulus of M2AlC (M = Ti, V, and Cr). Appl Phys Lett. 2003;83:899–901.
  • Wang J, Zhou Y. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti, V, Nb, and Cr) ceramics. Phys Rev B: Condens Matter. 2004;69:214111.
  • Emmerlich J, Music D, Houben A, et al. Systematic study on the pressure dependence of M2AlC phases (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W). Phys Rev B: Condens Matter. 2007;76:224111.
  • Manoun B, Saxena SK, Hug G, et al. Synthesis and compressibility of Ti3(Al,Sn0.2)C2 and Ti3Al(C0.5,N0.5)2. J Appl Phys. 2007;101:113523.
  • Barsoum MW, Zhen T, Kalidindi SR, et al. Fully reversible, dislocation based compressive deformation of Ti3SiC2 to 1 GPa. Nat Mater. 2003;2:107–111.
  • Barsoum MW, Zhen T, Zhou A, et al. Microscale modeling of kinking nonlinear elastic solids. Phys Rev B: Condens Matter. 2005;71B:134101.
  • Molina-Aldareguia JM, Emmerlich J, Palmquist J-P, et al. Kink formation around indents in laminated Ti3SiC2 thin films studied in the nanoscale. Scr Mater. 2003;49:155–160.
  • Tian W, Sun Z, Hashimoto H, et al. Compressive deformation behavior of ternary compound Cr2AlC. J Mater Sci. 2009;44:102–107.
  • Hess JB, Barrett SC. Structure and nature of kink bands in zinc. Trans AIME. 1949;185:599–606.
  • Orowan E. A type of plastic deformation new in metals. Nature. 1942;149:643–644.
  • Frank FC, Stroh AN. On the theory of kinking. Proc Phys Soc. 1952;65:811–821.
  • Wadee MA, Edmunds R. Kink band propagation in layered structures. J Mech Phys Solids. 2005;53:2017–2035.
  • Zhou AG, Basu S, Barsoum MW. Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals. Acta Mater. 2008;56:60–67.
  • Zhou AG, Barsoum MW. Kinking nonlinear elasticity and the deformation of Mg. Metall Mater Trans A. 2009;40:1741–1756.
  • Barsoum MW, Zhao X, Shanazarov S, et al. Ripplocation: a universal deformation mechanism in layered solids. Phys Rev Mater. 2019;3:013602.
  • Zhou AG, Barsoum WM. Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5). J Alloys Compd. 2010;498:62–67.
  • Shamma M, Caspi E, Anasori B, et al. In situ neutron diffraction evidence for fully reversible dislocation motion in highly textured polycrystalline Ti2AlC samples. Acta Mater. 2015;98:51–63.
  • Barsoum MW, Tucker GJ. Deformation of layered solids: ripplocations not basal dislocations. Scr Mater. 2017;139:166–172.
  • Zhen T, Barsoum MW, Kalidindi SR. Effects of temperature, strain rate and grain size on the compressive properties of Ti3SiC2. Acta Mater. 2005;53:4163–4171.
  • Radovic M, Barsoum MW, El-Raghy T, et al. Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. Acta Mater. 2002;50:1297–1306.
  • Sun Z-M, Murugaiah A, Zhen T, et al. Microstructure and mechanical properties of porous Ti3SiC2. Acta Mater. 2005;53:4359–4366.
  • Fraczkiewicz M, Zhou AG, Barsoum MW. Mechanical damping in porous Ti3SiC2. Acta Mater. 2006;54:5261–5270.
  • Tian WB, Wang PL, Zhang GJ, et al. Mechanical properties of Cr2AlC ceramics. J Am Ceram Soc. 2007;90(5):1663–1666.
  • Zhou YC, Wang XH. Deformation of polycrystalline Ti2AlC under compression. Mater Res Innov. 2001;5(2):87–93.
  • Bell IA, Wilson CJL, McLaren AC, et al. Kinks in mica: role of dislocations and (001) cleavage. Tectonophysics. 1986;127:49–65.
  • Christoffersen R, Kronenberg AK. Dislocation interactions in experimentally deformed biotite. J Struct Geol. 1993;15:1077–1095.
  • Mares VM, Kronenberg AK. Experimental deformation of muscovite. J Struct Geol. 1993;15:1061–1075.
  • Manley ME, Schulson EM. Kinks and cracks in S1 ice under across-column compression. Philos Mag Lett. 1997;75:83–90.
  • Budiansky B, Fleck NA, Amazigo JC. On kink-band and propagation in fiber composites. J Mech Phys Solids. 1998;46:1637–1653.
  • Yang Q, Cox B. Cohesive models for damage evolution in laminated composites. Int J Fract. 2005;133:107–137.
  • Kelly BT. Physics of graphite. London: Applied Science Publishers; 1981.
  • Hunt GW, Peletier MA, A M. Wadee: The Maxwell stability criterion in pseudo-energy models of kink banding. J Struct Geol. 2000;22:669–681.
  • Dodwell TJ, Hunt GW, Peletier MA, et al. Multi-layered folding with voids. Phil Trans A. 2012;370:1740–1758.
  • Kushima A, Qian X, Zhao P, et al. Ripplocations in van der Waals layers. Nano Lett. 2015;15:1302–1308.
  • Murugaiah A, Barsoum MW, Kalidindi SR, et al. Spherical nanoindentations and kink bands inTi3SiC2. J Mater Res. 2004;19:1139–1148.
  • Gruber J, Lang AC, Griggs J, et al. Evidence for bulk ripplocations in layered solids. Sci Rep. 2016;6:33451.
  • Griggs J, Lang AC, Gruber J, et al. Spherical nanoindentation, modeling and transmission electron microscopy evidence for ripplocations in Ti3SiC2. Acta Mater. 2017;131:141–155.
  • Frieberg D, Barsoum MW, Tucker GJ. Nucleation of ripplocations through atomistic modeling of surface nanoindentation in graphite. Phys Rev Mater. 2018;2:053602.
  • Barsoum MW, Murugaiah A, Kalidindi SR, et al. Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon N Y. 2004;42:1435–1445.
  • Basu S, W M. Barsoum: On spherical nanoindentations, kinking nonlinear elasticity of mica single crystals and their geological implications. J Struct Geol. 2009;31:791–801.
  • El-Raghy T, Zavaliangos A, Barsoum MW, et al. Damage mechanisms around hardness indentations in Ti3SiC2. J Am Ceram Soc. 1997;80:513–516.
  • Nickl JJ, Schweitzer KK, Luxenberg P. Gasphasenabscheidung in Systeme Ti-C-Si. J Less-Common Met. 1972;26:335–353.
  • Kuroda Y, Low IM, Barsoum MW, et al. Indentation responses and damage characteristics of hot isostatically pressed Ti3SiC2. J Aust Ceram Soc. 2001;37:95–102.
  • Berger O, Boucher R. Crack healing in Y-doped Cr2AlC-MAX phase coatings. Surf Eng. 2017;33(3):192–203.
  • Bao YW, Hu CF, Zhou YC. Damage tolerance of nanolayer grained ceramics and quantitative estimation. Mater Sci Technol. 2006;22(2):227–230.
  • Schneider JM, Sigumonrong DP, Music D, et al. Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics. Scr Mater. 2007;57:1137–1140.
  • Sarkar D, Basu B, Chu MC, et al. R-curve behavior of Ti3SiC2. Ceram Int. 2007;33:789–793.
  • Gilbert CJ, Bloyer DR, Barsoum MW, et al. Fatigue crack growth and fracture properties of coarse and fine grained Ti3SiC2. Scr Mater. 2000;42:761–767.
  • Zhang H, Wang ZG, Zang QS, et al. Cyclic fatigue crack propagation behavior of Ti3SiC2 synthesized by pulse discharge sintering (PBS) technique. Scr Mater. 2003;49:87–92.
  • Tian WB, Sun ZM, Hashimoto H, et al. Synthesis, microstructure and properties of (Cr1-xVx)xAlC solid solutions. J Alloy Compd. 2009;484:130–133.
  • Meng FL, Zhou YC, Wang JY. Strengthening of Ti2AlC by substituing Ti with V. Scr Mater. 2005;53:1369–1372.
  • Souchet A, Fontaine J, Belin M, et al. Tribological duality of Ti3SiC2. Tribol Lett. 2005;18(3):341–352.
  • Crossley A, Kisi EH, Summers JWB, et al. Ultra-low friction for a layered carbide-derived ceramic, Ti3SiC2, investigated by lateral force microscopy (LFM). J Phys D: Appl Phys. 1999;32:632–638.
  • Gupta S, W M. Barsoum: On the tribology of the MAX phases and their composites during dry sliding: A review. Wear. 2011;271:1878–1894.
  • Wan DT, Hu CF, Bao YW, et al. Effect of SiC particles on the friction and wear behavior of Ti3Si(Al)C2-based composites. Wear. 2007;262:826–832.
  • Hu CF, Zhou YC, Bao YW, et al. Tribological properties of polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites. J Am Ceram Soc. 2006;89:3456–3461.
  • Wu L, Chena J, Liua M, et al. Reciprocating friction and wear behavior of Ti3AlC2 and Ti3AlC2/Al2O3 composites against AISI52100 bearing steel. Wear. 2009;266:158–166.
  • Gupta S, Filimonov D, Palanisamy T, et al. Ta2AlC and Cr2AlC Ag-based composites-New solid lubricant materials for use over a wide temperature range against Ni-based superalloys and alumina. Wear. 2007;262(11–12):1479–1489.
  • Gupta S, Filimonov D, Zaitsev V, et al. Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3. Wear. 2009;267(9–10):1490–1500.
  • Filimonov D, Gupta S, Palanisamy T, et al. Effect of applied load and surface roughness on the tribological properties of Ni-based superalloys versus Ta2AlC/Ag or Cr2AlC/Ag composites. Tribol Lett. 2009;33(1):9–20.
  • Emmerlich J, Gassner G, Eklund P, et al. Micro and macroscale tribological behavior of epitaxial Ti3SiC2 thin films. Wear. 2008;264:914–919.
  • Wilhelmsson O, Råsander M, Carlsson M, et al. Design of nanocomposite low-friction coatings. Adv Funct Mater. 2007;17:1611–1616.
  • Tabakoff W, Wakeman T. Test facility for material erosion at high temperature. ASTM. 1979;664(Special Publication):123–135.
  • Smialek JL, Archer FA, Garlick RG. Turbine airfoil degradation in the Persian Gulf War. JOM. 1994: 39–41.
  • Rossmann A. Die Sicherheit von Turbo-Flugtriebwerken. Band 1,Turbo Consult, 2000, 600.
  • Hamed A, Tabakoff W, Wenglarz R. Erosion and deposition in turbomachinery. J Propuls Power. 2006;22(2):350–360.
  • Heutling F, Uihlein T, Brendel T, et al. Erosionsschutz für Titan- und Superlegierungen. Tech Rep. 2010. MTUAero Engines GmbH.
  • Schrade M, Staudacher S. High-speed test rig for the investigation of erosion damage of axial compressor blades. Document ID: 340033, Deutscher Luft- und Raumfahrtkongress, 2014, p. 1–8.
  • Evans AG, Fleck NA, Faulhaber S, et al. Scaling laws governing the erosion and impact resistance of thermal barrier coatings. Wear. 2006;260:886–894.
  • Evans AG. Impact damage mechanics: solid projectiles. In: CM Preece, editor. Treatise on materials science and technology. vol. 16, Erosion. New York (NY): Academic Press; 1979. p. 1–67.
  • Ruff AW, Wiederhorn SM. Erosion by solid particle impact. In: CM Preece, editor. Treatise on materials science and technology. vol.16, Erosion, New York (NY): Academic Press; 1979. p. 69–126.
  • Nicholls JR, Stephenson DJ. Monte Carlo modelling of erosion process. Wear. 1995;186–187:64–77.
  • Verspui MA, de With G, Corbijn A, et al. Simulation model for the erosion of brittle materials. Wear. 1999;233–235:436–443.
  • Gachon Y, Vannes AB, Farges G, et al. Study of sand particle erosion of magnetron sputtered multilayer coatings. Wear. 1999;233–235:263–274.
  • Woytowitz PJ, Richman RH. Solid mechanics modelling of erosion damage. ASTM STP. 1997;1315:186–199.
  • Woytowitz PJ, Richman RH. Modeling of damage from multiple impacts by spherical particles. Wear. 1999;233–235:120–133.
  • Chen X, Hutchinson JW. Particle impact on metal substrates with application to foreign object damage to aircraft engines. J Mech Phys Solids. 2002;50:2669–2690.
  • Bielawski M, Beres W. FE modelling of surface stresses in erosion-resistant coatings under single particle impact. Wear. 2007;262:167–175.
  • Wang Y-F, Yang Z-G. Finite element model of erosive wear on ductile and brittle materials. Wear. 2008;265:871–878.
  • Chen Q, Li DY. Computer simulation of solid particle erosion. Wear. 2003;254:203–210.
  • Wellman RG, Nicholls JR. High temperature erosion-oxidation mechanisms, maps and models. Wear. 2004;256(9–10):907–917.
  • Hutching IM. A model for the erosion of metals by spherical particles at normal incidence. Wear. 1981;70(3):269–281.
  • Maurer C, Schulz U. Erosion resistant titanium based PVD coatings on CFRP. Wear. 2013;302:937–945.
  • Maurer C. Versagensmechanismen von PVD-Beschichtungen auf CFK unter Erosionsverschleiß [Ph.D thesis]. Aachen: RWTH; 2014, p. 114.
  • Bellman RJ, Levy A. Erosion mechanism in ductile metals. Wear. 1981;70(1):1–27.
  • Tilly GP. A two stage mechanism of ductile erosion. Wear. 1973;23(1):87–96.
  • Ives LK, Ruff WA. Transmission and scanning electron microscopy studies of deformation at erosion impact sites. Wear. 1978;46(1):149–162.
  • Lawn BR, Evans AG, Marshall DB. Elastic/plastic indentation damage in ceramics: the median crack system. J Am Ceram Soc. 1980;63(9–10):574–581.
  • Shipway PH, Hutchings IM. The role of particle properties in the erosion of brittle materials. Wear. 1996;193(1):105–113.
  • Lawn BR. Fracture and deformation in brittle solids: a perspective on the issue of scale. J Mater Res. 2004;19(1):22–29.
  • Srinivasan S, Scattergood RO. Effect of erodent hardness on erosion of brittle materials. Wear. 1988;1(28):139–152.
  • Hutchings IM. Ductile-brittle transitions and wear maps for the erosion and abrasion of brittle materials. J Phys D: Appl Phys. 1992;25(1A):A212.
  • Sheldon GL, Finnie I. On the ductile behaviour of nominally brittle materials during erosive cutting. J Manuf Sci Eng. 1966;88(4):387–392.
  • Lawn BR, Swain MV. Microfracture beneath point indentations in brittle solids. J Mater Sci. 1975;10(1):113–122.
  • Lawn BR, Deng Y, Marinda P, et al. Overview: damage in brittle layer structures from concentrated loads. J Mater Res. 2002;17(12):3019–3036.
  • Levy AV. Solid particle erosion and erosion-corrosion of materials. Materials Park (OH): ASM International; 1995.
  • Hutchings IM. Transitions, threshold effects and erosion maps. Key Eng Mater. 1992;71:75–92.
  • Oka YI, Matsumura M, Kawabata T. Relationship between surface hardness and erosion damage caused by solid particle impact. Wear. 1993;162–164:688–695.
  • Eichner D, Schlieter A, Leyens C, et al. Solid particle erosion behavior of nanolaminated Cr2AlC films. Wear. 2018;402–403:187–195.
  • Cousens AK, Hutchings IM. A critical study of the erosion of an aluminium alloy by solid spherical particles at normal impingement. Wear. 1983;88:335–348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.