309
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Microarc oxidation coatings containing TiC and NbC on magnesium alloy

, , , , , & show all
Pages 1171-1179 | Received 19 May 2019, Accepted 14 Jun 2019, Published online: 03 Jul 2019

References

  • Song G, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D. Corros Sci. 1999;41:249–273. doi: 10.1016/S0010-938X(98)00121-8
  • Gray JE, Luan B. Protective coatings on magnesium and its alloys – a critical review. J Alloys Comp. 2002;336:88–113. doi: 10.1016/S0925-8388(01)01899-0
  • Yerokhin A, Nie X, Matthews A, et al. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7
  • Lu X, Mohedano M, Blawert C, et al. Plasma electrolytic oxidation coatings with particle additions – a review. Surf Coat Technol. 2016;307:1165–1182. doi: 10.1016/j.surfcoat.2016.08.055
  • Zhang D, Ge Y, Liu G, et al. Investigation of tribological properties of micro-arc oxidation ceramic coating on Mg alloy under dry sliding condition. Ceram Int. 2018;44:16164–16172. doi: 10.1016/j.ceramint.2018.05.137
  • Dou J, Chen Y, Yu H, et al. Research status of magnesium alloys by micro-arc oxidation: a review. Surf Eng. 2017;33:731–738. doi: 10.1080/02670844.2017.1278642
  • Sreekanth D, Rameshbabu N, Venkateswarlu K. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceram Int. 2012;38:4607–4615. doi: 10.1016/j.ceramint.2012.02.040
  • Yang X, Ma A, Liu H, et al. Microstructure and corrosion resistance of yellow MAO coatings. Surf Eng. 2019;35:334–342. doi: 10.1080/02670844.2018.1445939
  • Sankara Narayanan TSN, Park IS, Lee MH. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog Mater Sci. 2014;60:1–71. doi: 10.1016/j.pmatsci.2013.08.002
  • Gu C, Wang L, Hu X, et al. Borate’s effects on coatings by PEO on AZ91D alloy. Surf Eng. 2017;33:773–778. doi: 10.1080/02670844.2017.1287622
  • Wang Y, Wei D, Yu J, et al. Effects of Al2O3 nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy. J Mater SciTechnol. 2014;30:984–990.
  • Li X, Luan B. Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy. Mater Lett. 2012;86:88–91. doi: 10.1016/j.matlet.2012.07.032
  • Mohedano M, Arrabal R, Mingo B, et al. Role of particle type and concentration on characteristics of PEO coatings on AM50 magnesium alloy. Surf Coat Technol. 2018;334:328–335. doi: 10.1016/j.surfcoat.2017.11.058
  • Lee KM, Shin KR, Namgung S, et al. Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation. Surf Coat Technol. 2011;205:3779–3784. doi: 10.1016/j.surfcoat.2011.01.033
  • Rehman ZU, Shin SH, Lim H, et al. Transformation of plasma electrolytic oxidation coatings from crater to cluster-based structure with increase in DC voltage and the role of ZrO2 nanoparticles. Surf Coat Technol. 2017;311:383–390. doi: 10.1016/j.surfcoat.2016.12.112
  • Arrabal R, Matykina E, Viejo F, et al. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles. Appl Surf Sci. 2008;254:6937–6942. doi: 10.1016/j.apsusc.2008.04.100
  • Lee KM, Lee BU, Yoon SI, et al. Evaluation of plasma temperature during plasma oxidation processing of AZ91 Mg alloy through analysis of the melting behavior of incorporated particles. Electrochim Acta. 2012;67:6–11. doi: 10.1016/j.electacta.2012.01.053
  • Lu X, Schieda M, Blawert C, et al. Formation of photocatalytic plasma electrolytic oxidation coatings on magnesium alloy by incorporation of TiO2 particles. Surf Coat Technol. 2016;307:287–291. doi: 10.1016/j.surfcoat.2016.09.006
  • Li W, Tang M, Zhu L, et al. Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance. Appl Surf Sci. 2012;258:10017–10021. doi: 10.1016/j.apsusc.2012.06.066
  • Lu X, Blawert C, Huang Y, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochim Acta. 2016;187:20–33. doi: 10.1016/j.electacta.2015.11.033
  • Lu X, Blawert C, Mohedano M, et al. Influence of electrical parameters on particle uptake during plasma electrolytic oxidation processing of AM50 Mg alloy. Surf Coat Technol. 2016;289:179–185. doi: 10.1016/j.surfcoat.2016.02.006
  • Mohedano M, Blawert C, Zheludkevich ML. Silicate-based Plasma Electrolytic Oxidation (PEO) coatings with incorporated CeO2 particles on AM50 magnesium alloy. Mater Des. 2015;86:735–744. doi: 10.1016/j.matdes.2015.07.132
  • Lim TS, Ryu HS, Hong S. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corros Sci. 2012;62:104–111. doi: 10.1016/j.corsci.2012.04.043
  • Vatan H N, Ebrahimi-kahrizsangi R, Kasiri-asgarani M. Structural, tribological and electrochemical behavior of SiC nanocomposite oxide coatings fabricated by plasma electrolytic oxidation (PEO) on AZ31 magnesium alloy. J Alloys Compd. 2016;683:241–255. doi: 10.1016/j.jallcom.2016.05.096
  • Lu X, Blawert C, Kainer KU, et al. Influence of particle additions on corrosion and wear resistance of plasma electrolytic oxidation coatings on Mg alloy. Surf Coat Technol. 2018;352:1–14. doi: 10.1016/j.surfcoat.2018.08.003
  • Lou B, Lee J, Tseng C, et al. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: effect of MoS2 particle addition. Surf Coat Technol. 2018;350:813–822. doi: 10.1016/j.surfcoat.2018.04.044
  • Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Mat Sci Eng R. 2000;29:49–113. doi: 10.1016/S0927-796X(00)00024-3
  • Zhou F, Zhang H, Sun C, et al. Microstructure and wear properties of multi ceramics reinforced metal-matrix composite coatings on Ti–6Al–4 V alloy fabricated by laser surface alloying. Surf Eng. 2019;35:683–691. doi: 10.1080/02670844.2019.1570611
  • Dong YJ, Wang HM. Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating. Surf Coat Technol. 2009;204:731–735. doi: 10.1016/j.surfcoat.2009.09.024
  • Zoita CN, Braic L, Kiss A, et al. Characterization of NbC coatings deposited by magnetron sputtering method. Surf Coat Technol. 2010;204:2002–2005. doi: 10.1016/j.surfcoat.2009.08.050
  • Wu SF, Yanagisawa K, Nishizawa T. ζ-potential on carbons and carbides. Carbon N Y. 2001;39:1537–1541. doi: 10.1016/S0008-6223(00)00275-X
  • Yerokhin A, Snizhko L, Gurevina N, et al. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surf Coat Technol. 2004;177–178:779–783. doi: 10.1016/j.surfcoat.2003.06.020
  • Cui X, Liu C, Yang R, et al. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism. Surf Coat Technol. 2015;269:228–237. doi: 10.1016/j.surfcoat.2014.09.071
  • Tang M, Li W, Liu H, et al. Preparation Al2O3/ZrO2 composite coating in an alkaline phosphate electrolyte containing K2ZrF6 on aluminum alloy by microarc oxidation. Appl Surf Sci. 2012;258:5869–5875. doi: 10.1016/j.apsusc.2012.02.124
  • Song Y, Dong K, Shan D, et al. Study of the formation process of titanium oxides containing microarc oxidation film on Mg alloys. Appl Surf Sci. 2014;314:888–895. doi: 10.1016/j.apsusc.2014.06.180
  • Kazanski B, Kossenko A, Zinigrad M, et al. Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy. Appl Surf Sci. 2013;287:461–466. doi: 10.1016/j.apsusc.2013.09.180
  • Laleh M, Sabour Rouhaghdam A, Shahrabi T, et al. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J Alloys Comp. 2010;496:548–552. doi: 10.1016/j.jallcom.2010.02.098
  • Duan H, Yan C, Wang F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim Acta. 2007;52:3785–3793. doi: 10.1016/j.electacta.2006.10.066
  • Srinivasan PB, Liang J, Blawert C, et al. Effect of current density on the microstructure and corrosion behavior of plasma electrolytic oxidation treated AM50 magnesium alloy. Appl Surf Sci. 2009;255:4212–4218. doi: 10.1016/j.apsusc.2008.11.008
  • Xia SJ, Yue R, Rateick RG, et al. Electrochemical studies of AC/DC Anodized Mg alloy in NaCl solution. J Electrochem Soc. 2004;151:B179–B187. doi: 10.1149/1.1646139
  • Duan H, Du K, Yan C, et al. Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D. Electrochim Acta. 2006;51:2898–2908. doi: 10.1016/j.electacta.2005.08.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.