132
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Microstructural investigations of 800 keV Ar ions irradiated nanocrystalline ZrN thin films

, ORCID Icon, , & ORCID Icon
Pages 326-333 | Received 13 Jul 2019, Accepted 26 Aug 2019, Published online: 25 Sep 2019

References

  • Toth LE. Transition metal carbides and nitrides. In: Refractory materials: a series of monographs vol. 7. New York (NY): Academic Press; 1971.
  • Lengauer W. Transition metal carbides, nitrides and carbonitrides. In: R Riedel, editor. Handbook of ceramic hard materials, vol. 1. Weinheim: Wiley-VCH; 2000.
  • Patsalas P, Kalfagiannis N, Kassavetis S, et al. Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mat Sci Eng R. 2018;123:1–55. doi: 10.1016/j.mser.2017.11.001
  • Veszelei M, Andersson K, Ribbing CG, et al. Optical constants and Drude analysis of sputtered zirconium nitride films. Appl Optics. 1994;33:1993–2001. doi: 10.1364/AO.33.001993
  • Zou JX, Liu B, Lin LW, et al. Investigation of microstructure and properties of ultrathin graded ZrNx self-assembled diffusion barrier in deep nano-vias prepared by plasma ion immersion implantation. Appl Surf Sci. 2018;427:950–955. doi: 10.1016/j.apsusc.2017.08.114
  • Voss LF, Stafford L, Wright JS, et al. Nitride-based Ohmic and Schottky contacts to GaN. ECS Trans. 2007;6:191–199. doi: 10.1149/1.2731184
  • Kim JH, Jeong GY, Kim S, et al. Effect of coating thickness and annealing temperature on ZrN coating failure of U-Mo particles under heat treatment. J Nucl Mater. 2018;507:347–359. doi: 10.1016/j.jnucmat.2018.05.019
  • JiaoL YKY, Chen D, et al. Radiation tolerant nanocrystalline ZrN films under high dose heavy-ion irradiations. J Appl Phys. 2015;117:145901. doi: 10.1063/1.4917381
  • Banerjee M, Srinivasan NB, Zhu HZ, et al. Fabrication of ZrO2 and ZrN films by Metalorganic chemical vapor deposition employing new Zr precursors. Crys Growth Des. 2012;1:5079–5089. doi: 10.1021/cg3010147
  • Meng QN, Wen MCQ. Influence of the residual stress on the nanoindentation evaluated hardness for zirconiumnitride films. Surf Coat Technol. 2012;206:3250–3257. doi: 10.1016/j.surfcoat.2012.01.021
  • Lin SC, Zhang J, Zhu RH, et al. Effects of sputtering pressure on microstructure and mechanical properties of ZrN films deposited by magnetron sputtering. Mater Res Bull. 2018;105:231–236. doi: 10.1016/j.materresbull.2018.04.054
  • Rizzo A, Valerini D, Capodieci L, et al. Reactive bipolar pulsed dual magnetron sputtering of ZrN films: The effect of duty cycle. Appl Surf Sci. 2018;427:994–1002. doi: 10.1016/j.apsusc.2017.08.032
  • Spillmann H, Willmott PR, Morstein M, et al. Zrn, ZrxAlyN and ZrxGayN thin films – novel materials for hard coatings grown using pulsed laser deposition. Appl Phys A. 2001;73:441–450. doi: 10.1007/s003390100780
  • Koutsokeras LE, Matenoglou GM, Patsalas P. Structure, electronic properties and electron energy loss spectra of transition metal nitride films. Thin Solid Films. 2013;528:49–52. doi: 10.1016/j.tsf.2012.06.086
  • Gu CY, Sui ZP, Li YX, et al. The growth of the metallic ZrNx thin films on P-GaN substrate by pulsed laser deposition. Appl Surf Sci. 2018;433:306–311. doi: 10.1016/j.apsusc.2017.09.262
  • Mahmood K, Bashir S, Haq F, et al. Surface, structural, electrical and mechanical modifications of pulsed laser deposited ZrN thin films by implantation of MeV carbon ions. Nucl Inst Methods Phys Res B. 2019;448:61–69. doi: 10.1016/j.nimb.2019.04.013
  • Craciun D, Socol G, Dorcioman G, et al. Ar ions irradiation effects in ZrN thin films grown by pulsed laser. Appl Surf Sci. 2015;336:129–132. doi: 10.1016/j.apsusc.2014.10.032
  • Lu FY, Huang MB, Yaqoob F, et al. Displacive radiation-induced structural contraction in nanocrystalline ZrN. Appl Phys Lett. 2012;101, Article Number: 041904.
  • Khan S, Ahmed I, Khalid N, et al. Carbon ions irradiation induced modifications in structural and electrical resistivity characteristics of ZrN thin films. Mat Sci Semicon Proc. 2015;39:530–535. doi: 10.1016/j.mssp.2015.05.062
  • Kuznetsov KB, Kovalev IA, Nechaev AN, et al. Stability of the structure of compact zirconium nitride Ceramics to irradiation with high-energy xenon ions. Inorg Mater. 2016;52:1235–1239. doi: 10.1134/S0020168516120062
  • Shah WH, Iqbal Y, Safeen A, et al. Study of the structural and electrical properties of silicon ion irradiated zirconium nitride thin films. Mod Phys Lett. 2018;B 32, Article Number: 1850281.
  • van Vuuren AJ, Skuratov VA, Uglov VV, et al. Radiation tolerance of nanostructured ZrN coatings against swift heavy ion irradiation. J Nucl Mater. 2013;442:507–511. doi: 10.1016/j.jnucmat.2013.02.047
  • Ogarkov AI, Shevtsov SV, Kuznetsov KB, et al. Irradiation of Titanium, zirconium, and Hafnium nitrides with high-energy ions. Inorg Mater. 2016;52:561–565. doi: 10.1134/S002016851606011X
  • Martin C, Miller KH, Makino H, et al. Optical properties of Ar ions irradiated nanocrystalline ZrC and ZrN thin films. J Nucl Mater. 2017;488:16–21. doi: 10.1016/j.jnucmat.2017.02.041
  • Han K-C, Lin G-Q, Dong C, et al. Influence of nitrogen vacancy concentration on mechanical and Electrical properties of Rocksalt zirconium nitride films. Acta Metall Sin (Engl Lett). 2017;30:1100–1108. doi: 10.1007/s40195-017-0636-x
  • Abadias G. Stress and preferred orientation in nitride-based PVD coatings. Surf Coat Techn. 2008;202:2223–2235. doi: 10.1016/j.surfcoat.2007.08.029
  • Craciun D, Socol G, Simeone D, et al. Structural and mechanical properties changes induced in nanocrystalline ZrC thin films by Ar ion irradiation. J Nucl Mater. 2016;468:78–83. doi: 10.1016/j.jnucmat.2015.11.012
  • Kobayashi N. Chapter 10, p. 254 in Electric refractory materials, Yukinobu Kumashiro edit., CRC Press, Aug 24, 2000 – Technology & Engineering – 776 pages.
  • Egeland GW, Valdez JA, Maloy SA, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption. J Nucl Mater. 2013;435:77–87. doi: 10.1016/j.jnucmat.2012.12.025
  • Muneshwar T, Cadien K. Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: effect of ambient oxidation. Appl Surf Sci. 2018;435:367–376. doi: 10.1016/j.apsusc.2017.11.104
  • Greczynski G, Primetzhofer D, Lu J, et al. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers. Appl Surf Sci. 2017;396:347–358. doi: 10.1016/j.apsusc.2016.10.152
  • Greczynski G, Mraz S, Hultman L, et al. Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films. Appl Surf Sci. 2016;385:356–359. doi: 10.1016/j.apsusc.2016.05.129
  • Craciun D, Socol G, Stefan N, et al. The effect of deposition atmosphere on the chemical composition of TiN and ZrN thin films grown by pulsed laser deposition. Appl Surf Sci. 2014;302:124–128. doi: 10.1016/j.apsusc.2013.10.095
  • Zhu F, Zhu K, Hu Y, et al. Microstructure and Young’s modulus of ZrN thin film prepared by dual ion beam sputtering deposition. Surf Coat Techn. 2019;374:997–1005. doi: 10.1016/j.surfcoat.2019.06.094

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.