138
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effect of substrate temperature on the oxidation behaviour of NiCrAlY coating

, &
Pages 129-136 | Received 01 May 2019, Accepted 12 Nov 2019, Published online: 28 Jul 2020

References

  • Tamarin Y. Protective coatings for turbine blades. Ohio: ASM International; 2002; p. 5–24.
  • Wu Y, Wang Q, Ke P, et al. Evaluation of arc ion plated NiCoCrAlYSiB coatings after oxidation at 900–1100 C. Surf Coat Technol. 2006;200:2857–2863. doi: 10.1016/j.surfcoat.2005.04.055
  • Mattox DM. Handbook of physical vapor deposition (PVD) processing. Amsterdam: William Andrew; 2010; p. 25–72.
  • Hosseini S, Mirdamadi S, Rastegari S. Investigating efficiency of α-Al2O3 diffusion barrier layer in oxidation of EB-PVD NiCrAlY coatings. Surf Eng. 2015;31:146–155. doi: 10.1179/1743294414Y.0000000365
  • Hosseini S, Rastegari S, Mirdamadi S. Investigating the transition time reduction in evaporation of NiCrAlY using EB–PVD. Surf Eng. 2014;30:511–515. doi: 10.1179/1743294414Y.0000000272
  • Li Z, Qian S, Wang W, et al. Microstructure and oxidation resistance of magnetron-sputtered nanocrystalline NiCoCrAlY coatings on nickel-based superalloy. J Alloys Compd. 2010;505:675–679. doi: 10.1016/j.jallcom.2010.06.112
  • Wang J, Chen M, Cheng Y, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel based single-crystal superalloy. Corros Sci. 2017;123:27–39. doi: 10.1016/j.corsci.2017.04.004
  • Peng X, Jiang S, Gong J, et al. Preparation and hot corrosion behavior of a NiCrAlY+AlNiY composite coating. J Mater Sci Technol. 2016;32:587–592. doi: 10.1016/j.jmst.2016.04.017
  • Vetter J, Knotek O, Brand J, et al. MCraly coatings deposited by cathodic vacuum arc evaporation. Surf Coat Technol. 1994;68-69:27–31. doi: 10.1016/0257-8972(94)90133-3
  • Leontiev S, Kuznetsov V, Rybnikov A, et al. Structure and properties of protective coatings produced by vacuum arc deposition. Surf Coat Technol. 1995;76-77:41–46. doi: 10.1016/0257-8972(95)02542-1
  • Martin PM. Handbook of deposition technologies for films and coatings: science, applications and technology. Oxford: William Andrew; 2009; pp. 1–31.
  • Zhao P, Chen M, Gu Y, et al. Oxidation behavior of NiCrAlY coatings prepared by arc ion plating using various substrate biases: effects of chemical composition and thickness of the coatings. Corros Sci. 2017;126:317–323. doi: 10.1016/j.corsci.2017.07.014
  • Renteria AF, Saruhan B, Ilavsky J. Relation of thermal conductivity with process induced anisotropic void systems in EB-PVD PYSZ thermal barrier coatings. Adv Ceram Coat Inter. 2009;306:3–15.
  • Rahmani H, Rastegari S, Mirdamadi S. Effective parameters on microstructure and properties of EB-PVD NiCrAlY coating. Surf Eng. 2015;31:156–165. doi: 10.1179/1743294414Y.0000000371
  • Liu L, Zhang H, Lei X, et al. Dependence of microstructure and thermal conductivity of EB-PVD thermal barrier coatings on the substrate rotation speed. Phys Procedia. 2011;18:206–210. doi: 10.1016/j.phpro.2011.06.082
  • Zhao P, Shen M, Gu Y, et al. High vacuum arc ion plating NiCrAlY coatings: bias effect and approach to preparation of functional gradient coatings. Surf Coat Technol. 2015;281:44–50. doi: 10.1016/j.surfcoat.2015.09.043
  • Shen M, Zhao P, Gu Y, et al. High vacuum arc ion plating NiCrAlY coatings: microstructure and oxidation behavior. Corros Sci. 2015;94:294–304. doi: 10.1016/j.corsci.2015.02.032
  • Vyskočil J, Musil J. Arc evaporation of hard coatings: process and film properties. Elsevier: Metallurgical Coatings and Thin Films; 1990; pp. 299–311.
  • Gautier C, Machet J. Study of the growth mechanisms of chromium nitride films deposited by vacuum Arc evaporation. Thin Solid Films. 1997;295:43–52. doi: 10.1016/S0040-6090(96)09164-X
  • Thornton JA. The microstructure of sputter-deposited coatings. J Vac Sci Technol A. 1986;4:3059–3065. doi: 10.1116/1.573628
  • Messier R, Giri A, Roy R. Revised structure zone model for thin film physical structure. J Vac Sci Technol A. 1984;2:500–503. doi: 10.1116/1.572604
  • Anders A. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films. 2010;518:4087–4090. doi: 10.1016/j.tsf.2009.10.145
  • Khakzadian J, Hosseini S, Madar KZ. The effect of the substrate temperature on the microstructure properties of the NiCrAl coating in cathodic arc deposition. Surf Coat Technol. 2018;337:342–348. doi: 10.1016/j.surfcoat.2018.01.001
  • Khakzadian J, Hosseini S, Madar KZ. Cathodic arc deposition of NiCrAlY coating: oxidation behaviour and thermodynamic. Surf Eng. 2019;35:677–682. doi: 10.1080/02670844.2018.1564474
  • Ohring M. Materials science of thin films. New Jersey (NJ): Academic press; 2001; p. 357–416.
  • Zhang K, Wang Q, Sun C, et al. Preparation and oxidation behavior of NiCrAlYSi coating on a cobalt-base superalloy K40S. Corros Sci. 2008;50:1707–1715. doi: 10.1016/j.corsci.2008.01.033
  • Huang W, Chang Y. Thermodynamic properties of the Ni–Al–Cr system. Intermetallics. 1999;7:863–874. doi: 10.1016/S0966-9795(98)00138-1
  • Raghavan V. Al-Cr-Ni (Aluminum-Chromium-Nickel). J Phase Equilib Diff. 2008;29:175–175. doi: 10.1007/s11669-008-9254-7
  • Campbell Jr FC. Manufacturing technology for aerospace structural materials. Oxford: Elsevier; 2011; p. 211–272.
  • Kitamura T. Examination on microstructural change of a bond coat in a thermal barrier coating for temperature estimation and aluminum-content prediction. Progr Therm Barrier Coat. 2009;2:279–286.
  • Cruchley S, Evans H, Taylor M, et al. Chromia layer growth on a Ni-based superalloy: sub-parabolic kinetics and the role of titanium. Corros Sci. 2013;75:58–66. doi: 10.1016/j.corsci.2013.05.016
  • Quadakkers W. Growth mechanisms of oxide scales on ODS alloys in the temperature range 1000-1100°C. Mater Corros. 1990;41:659–668. doi: 10.1002/maco.19900411204
  • Haugsrud R. On the high-temperature oxidation of nickel. Corros Sci. 2003;45:211–235. doi: 10.1016/S0010-938X(02)00085-9
  • Evans H, Norfolk D, Swan T. Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers. J Electrochem Soc. 1978;125:1180–1185. doi: 10.1149/1.2131644
  • Niranatlumpong P, Ponton C, Evans H. The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings. Oxid Met. 2000;53:241–258. doi: 10.1023/A:1004549219013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.