203
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Structure and properties of titanium and the Ti-6Al-7Nb alloy after isothermal oxidation

Pages 847-858 | Received 27 Feb 2019, Accepted 31 Dec 2019, Published online: 09 Jan 2020

References

  • Askeland DR, Fulay PP, Wright WJ. The science and engineering of materials. Stamford: Cengage Learn; 2010.
  • Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials science – an introduction to materials in medicine. San Diego: Academic Press is an imprint of Elsevier; 2013.
  • Fattah-Alhosseini A, Ansari AR, Mazaheri Y, et al. Effect of immersion time on the passive and electrochemical response of annealed and nano-grained commercial pure titanium in Ringer’s physiological solution at 37°C. Mater Sci Eng C. 2017;71:771–779. doi: 10.1016/j.msec.2016.10.057
  • Manmeet K, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C. 2019;102:844–862. doi: 10.1016/j.msec.2019.04.064
  • Prasad S, Ehrensberger M, Prasad Gibson M, et al. Biomaterial properties of titanium in dentistry. JOral Biosci. 2015;57:192–199.
  • Lee JS, Lee SJ, Yang SB, et al. Facile preparation of mussel-inspired antibiotic-decorated titanium surfaces with enhanced antibacterial activity for implant applications. App Surf Sci. 2019;496:143675. doi: 10.1016/j.apsusc.2019.143675
  • Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112–131. doi: 10.1016/j.actbio.2019.05.045
  • Wang S, Liao Z, Liu Y, et al. Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy. Mater Chem Phys. 2015;159:139–151. doi: 10.1016/j.matchemphys.2015.03.063
  • Wang S, Liao Z, Liu Y, et al. Different tribological behaviors of titanium alloys modified by thermal oxidation and spraying diamond like carbon. SurfCoat Technol. 2014;252:64–73.
  • Yavari SA, Necula BS, Fratila-Apachitei LE, et al. Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surf Eng. 2016;32(6):411–417. doi: 10.1179/1743294415Y.0000000101
  • Acciari HA, Palma DPS, Codaro EN, et al. Surface modifications by both anodic oxidation and ion beam implantation on electropolished titanium substrates. App Surf Sci. 2019;487:1111–1120. doi: 10.1016/j.apsusc.2019.05.216
  • Bui VD, Mwangi JW, Schubert A. Powder mixed electrical discharge machining for antibacterial coating on titanium implant surfaces. J Manufact Proc. 2019;44:261–270. doi: 10.1016/j.jmapro.2019.05.032
  • Zhechao F, Hongwei F. Study on selective laser melting and heat treatment of Ti-6Al-4 V alloy. Results Phys. 2018;10:660–664. doi: 10.1016/j.rinp.2018.07.008
  • Somsanith N, Sankara Narayanan TSN, Kim YK, et al. Surface medication of Ti–15Mo alloy by thermal oxidation. Evaluation of surface characteristics and corrosion resistance in Ringer’s solution. App Surf Sci. 2015;356:1117–1126. doi: 10.1016/j.apsusc.2015.08.181
  • Höhn S, Virtanen S. Influence of CO2 exposure on pH value, electrochemical properties, and the formation of calcium-phosphate on Ti–6Al–4 V under adjusted in vitro conditions in DMEM. Surf Sci. 2015;636:47–53. doi: 10.1016/j.susc.2015.02.007
  • Zhang XZ, Leary M, Tang HP, et al. Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opin Solid State Mater Sci. 2018;22:75–99. doi: 10.1016/j.cossms.2018.05.002
  • Fellah M, Assala O, Labaïz M, et al. Friction and wear behavior of Ti-6Al-7Nb biomaterial alloy. J Biomater Nanobiotechn. 2013;4:374–384. doi: 10.4236/jbnb.2013.44047
  • Perettia V, Ferraris S, Gautier G, et al. Surface treatments for boriding of Ti6Al4V alloy in view of applications as a biomaterial. Trib Intern. 2018;126:21–28. doi: 10.1016/j.triboint.2018.05.006
  • Sundqvist B, Tolpygo VK. Saturation and pressure effects on the resistivity of titanium and two Ti-Al alloys. J Phys Chem Solids. 2018;122:41–50. doi: 10.1016/j.jpcs.2018.05.046
  • Wen M, Wen C, Hodgson P, et al. Improvement of the biomedical properties of titanium using SMAT and thermal oxidation. Coll Surf B: Biointerfaces. 2014;116:658–665. doi: 10.1016/j.colsurfb.2013.10.039
  • Göttlicher M, Rohnke M, Helth A, et al. Controlled surface modification of Ti–40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomater. 2013;9(11):9201–9210. doi: 10.1016/j.actbio.2013.07.015
  • Takematsu E, Katsumata K, Okada K, et al. Bioactive surface modification of Ti–29Nb–13Ta–4.6Zr alloy through alkali solution treatments. Mater Sci Eng: C. 2016;62:662–667. doi: 10.1016/j.msec.2016.01.041
  • Han A, Li X, Huang B, et al. The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation. Inter J Adhes Adhesives. 2016;69:125–132. doi: 10.1016/j.ijadhadh.2016.03.018
  • Li X, Chen T, Hu J, et al. Modified surface morphology of a novel Ti–24Nb–4Zr–7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Coll Surf B: Biointerfaces. 2016;144:265–275. doi: 10.1016/j.colsurfb.2016.04.020
  • Huang X, Liu Z. Growth of titanium oxide or titanate nanostructured thin films on Ti substrates by anodic oxidation in alkali solutions. Surf Coat Technol. 2013;232:224–233. doi: 10.1016/j.surfcoat.2013.05.015
  • Patel SB, Hamlekhan A, Royhman D, et al. Enhancing surface characteristics of Ti–6Al–4V for bio-implants using integrated anodization and thermal oxidation. J Mater Chem B. 2014;2:3597–3608. doi: 10.1039/c3tb21731k
  • Jouanny I, Labdi S, Aubert P, et al. Structural and mechanical properties of titanium oxide thin films for biomedical application. Thin Solid Films. 2010;518:3212–3217. doi: 10.1016/j.tsf.2009.09.046
  • Fargas G, Roa JJ, Sefer B, et al. Influence of cyclic thermal treatments on the oxidation behavior of Ti-6Al-2Sn-4Zr-2Mo alloy. Mater Character. 2018;145:218–224. doi: 10.1016/j.matchar.2018.08.049
  • Kumar S, Sankara Narayanan TSN, Sundara Raman SG, et al. Surface modification of CP-Ti to improve the fretting-corrosion resistance: thermal oxidation vs. anodizing. Mater Sci Eng C. 2010;30:921–927. doi: 10.1016/j.msec.2010.03.024
  • Lieblich M, Barriuso S, Multigner M, et al. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties. J Mech Behaviour Biom Mater. 2016;54:173–184. doi: 10.1016/j.jmbbm.2015.09.032
  • Jiang H, Hirohasi M, Lu Y, et al. Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%) Al. Scr Mater. 2002;46:639–643. doi: 10.1016/S1359-6462(02)00042-8
  • Aniołek K, Kupka M, Dercz G. Cyclic oxidation of Ti–6Al–7Nb alloy. Vacuum. 2019;168:108859. doi: 10.1016/j.vacuum.2019.108859
  • Kumar S, Sankara Narayanan TSN, Sundara Raman SG, et al. Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization. Mater Chem Phys. 2010;119:337–346. doi: 10.1016/j.matchemphys.2009.09.007
  • Wang S, Liao Z, Liu Y, et al. Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy. Surf Coat Technol. 2014;240:470–477. doi: 10.1016/j.surfcoat.2014.01.004
  • Aniołek K, Kupka M, Łuczuk M, et al. Isothermal oxidation of Ti-6Al-7Nb alloy. Vacuum. 2015;114:114–118. doi: 10.1016/j.vacuum.2015.01.016
  • Aniołek K, Kupka M, Barylski A, et al. Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process. App Surf Sci. 2015;357:1419–1426. doi: 10.1016/j.apsusc.2015.09.245
  • Liu J, Suslov S, Li S, et al. Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V. Surf Coat Technol. 2017;325:289–298. doi: 10.1016/j.surfcoat.2017.04.051
  • Gemelli E, Camargo NHA. Oxidation kinetics of commercially pure titanium. Revista Matéria. 2007;12(3):525–531. doi: 10.1590/S1517-70762007000300014
  • Mrowiec S. Kinetyka i mechanizm utleniania metali [kinetics and mechanism of metal oxidation]. Katowice: Komitet Redakcyjny Wydawnictw WSI w Opolu; 1982.
  • Yoshihara M, Kim YW. Oxidation behaviour of gamma alloys designed for high temperature applications. Intermetallics. 2005;13(9):952–958. doi: 10.1016/j.intermet.2004.12.007
  • Król S. Mechanizm i kinetyka utleniania tytanu oraz wybranych stopów tytanu [mechanism and kinetics of titanium oxidation and selected titanium alloys]. Opole: Studia i monografie z. 82; 1994; Polish.
  • Mrowec S, Werber T. Korozja gazowa metali [Gas metal corrosion]. Katowice: Wydaw. ‘ Śląsk’; 1975; Polish.
  • Birks N, Meier GH, Pettit FS. Introduction to the high-temperature oxidation of metals. Cambridge: Cambridge University Press; 2006.
  • Biswas A, Majumdar JD. Surface characterization and mechanical property evaluation of thermally oxidized Ti-6Al-4V. Mater Character. 2009;60:513–518. doi: 10.1016/j.matchar.2008.12.014
  • Kumar S, Sankara Narayanan TSN, Sundara Raman SG, et al. Thermal oxidation of CP Ti – An electrochemical and structural characterization. Mater Character. 2010;61:589–597. doi: 10.1016/j.matchar.2010.03.002
  • Gemelli E, Scariot A, Camargo NHA. Thermal characterization of commercially pure titanium for Dental applications. Mater Res. 2007;10(3):241–246. doi: 10.1590/S1516-14392007000300004
  • Rybicki GC, Smialek JL. Effect of theθ-α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr. Oxid Met. 1989;31:275–304. doi: 10.1007/BF00846690
  • Smialek JL, Doychak J, Gaydosh DJ. Oxidation behavior of FeAl+Hf, Zr, B. Oxid Met. 1990;34:259–275. doi: 10.1007/BF00665018
  • Bailey R, Sun Y. Unlubricated sliding friction and wear characteristics of thermally oxidized commercially pure titanium. Wear. 2013;308:61–70. doi: 10.1016/j.wear.2013.09.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.