264
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Wear and corrosion behaviour of Ti-based coating on biomedical implants

, , ORCID Icon & ORCID Icon
Pages 32-41 | Received 05 Feb 2019, Accepted 05 Feb 2020, Published online: 25 Feb 2020

References

  • Thomann UI, Uggowitzer PJ. Wear–corrosion behavior of biocompatible austenitic stainless steels. Wear. 2000;239:48–58. doi: 10.1016/S0043-1648(99)00372-5
  • Guzmán P, Yate L, Sandoval M, et al. Characterization of the micro-abrasive wear in coatings of TaC-HfC/Au for biomedical implants. Materials. 2017;10:842. doi: 10.3390/ma10080842
  • Liu F, Xu JL, Yu DZ, et al. Wear resistance of micro-arc oxidation coatings on biomedical NiTi alloy. J Alloys Compd. 2009;487:391–394. doi: 10.1016/j.jallcom.2009.07.145
  • Yildiz F, Yetim AF, Alsaran A, et al. Wear and corrosion behaviour of various surface treated medical grade titanium alloy in bio-simulated environment. Wear. 2009;267:695–701. doi: 10.1016/j.wear.2009.01.056
  • Zhang E, Liu C. Effect of surface treatments on the surface morphology, corrosion property, and antibacterial property of Ti–10Cu sintered alloy. Biomed Mater. 2015;10:045009. doi: 10.1088/1748-6041/10/4/045009
  • Chauhan SR, Dass K. Dry sliding wear behaviour of titanium (Grade 5) alloy by using response surface methodology. Adv Tribol. 2013;2013:1–9. doi: 10.1155/2013/272106
  • Mani G, Feldman MD, Oh S, et al. Surface modification of cobalt–chromium–tungsten–nickel alloy using octadecyltrichlorosilanes. Appl Surf Sci. 2009;255:5961–5970. doi: 10.1016/j.apsusc.2009.01.046
  • Mani G, Feldman MD, Patel D, et al. Coronary stents: a materials perspective. Biomaterials. 2007;28:1689–1710. doi: 10.1016/j.biomaterials.2006.11.042
  • Schouten O, Bax JJ, Poldermans D. Management of patients with cardiac stents undergoing noncardiac surgery. Curr Opin Anesthesiol. 2007;20:274–278. doi: 10.1097/ACO.0b013e328105dac5
  • Wen C, Guan S, Peng L, et al. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl Surf Sci. 2009;255:6433–6438. doi: 10.1016/j.apsusc.2008.09.078
  • Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys–a review. Acta Biomater. 2012;8:2442–2455. doi: 10.1016/j.actbio.2012.04.012
  • Dearnley PA, Dahm KL, Çimenoǧlu H. The corrosion–wear behaviour of thermally oxidised CP-Ti and Ti–6Al–4V. Wear. 2004;256:469–479. doi: 10.1016/S0043-1648(03)00557-X
  • United Performance Metals. [Online]. Available from: https://www.upmet.com/sites/default/files/datasheets/316-316l.pdf; 2018.
  • Sivakumar M, Mudali UK, Rajeswari S. In vitro electrochemical investigations of advanced stainless steels for applications as orthopaedic implants. J Mater Eng Perform. 1994;3:744–753. doi: 10.1007/BF02818375
  • Silver FH, Doillon C. Biocompatibility. Interactions of biological and implantable materials. New York: VCH Publ, Inc.; 1989.
  • Kamachimudali U, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana. 01 6 2003; 28:601–637. doi: 10.1007/BF02706450
  • Ishfaq K, Ahmad N, Jawad M, et al. Evaluating material’s interaction in wire electrical discharge machining of stainless steel (304) for simultaneous optimization of conflicting responses. Materials. 2019;12(12):1–15. doi: 10.3390/ma12121940
  • Arias DF, Arango YC, Devia A. Study of TiN and ZrN thin films grown by cathodic arc technique. Appl Surf Sci. 2006;253:1683–1690. doi: 10.1016/j.apsusc.2006.03.017
  • Satou M, Andoh Y, Ogata K, et al. Coating films of titanium nitride prepared by ion and vapor deposition method. Jpn J Appl Phys. 1985;24:656. doi: 10.1143/JJAP.24.656
  • Brown IG. Cathodic arc deposition of films. Annu Rev Mater Sci. 1998;28:243–269. doi: 10.1146/annurev.matsci.28.1.243
  • Unal O, Mitchell TE, Heuer AH. Microstructures of Y2O3-stabilized ZrO2 electron beam-physical vapor deposition coatings on Ni-base Superalloys. J Am Ceram Soc. 1994;77:984–992. doi: 10.1111/j.1151-2916.1994.tb07256.x
  • Plank RV, Wei Y, DiNardo NJ, et al. Characterization of highly conducting, ultra-thin polyaniline films produced by evaporative deposition. Chem Phys Lett. 1996;263:33–38. doi: 10.1016/S0009-2614(96)01171-2
  • Porter HL, Mion C, Cai AL, et al. Growth of ZnO films on C-plane (0 0 0 1) sapphire by pulsed electron deposition (PED). Mater Sci Eng: B. 2005;119:210–212. doi: 10.1016/j.mseb.2005.02.042
  • Chiou W-T, Wu W-Y, Ting J-M. Growth of single crystal ZnO nanowires using sputter deposition. Diam Relat Mater. 2003;12:1841–1844. doi: 10.1016/S0925-9635(03)00274-7
  • Arunkumar P, Ramaseshan R, Dash S, et al. Texturing of pure and doped CeO 2 thin films by EBPVD through target engineering. RSC Adv. 2014;4:33338–33346. doi: 10.1039/C4RA04353G
  • Li D, Leroux P. Block on ring sliding wear evaluation; 2016.
  • Priyan MS, Hariharan P. Abrasive wear modes in ball-cratering test conducted on Fe 73 Si 15 Ni 10 Cr 2 alloy deposited specimen. Tribol Ind. 2014;36:97–106.
  • Li CX, Bell T. Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corros Sci. 2004;46:1527–1547. doi: 10.1016/j.corsci.2003.09.015
  • Priyan MS, Hariharan P. Wear and corrosion resistance of Fe based coatings by HVOF sprayed on Gray cast-iron for automotive application. Tribol Ind. 2014;36:394–405.
  • Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials science: an introduction to materials in medicine. USA: Elsevier; 2004.
  • Kereiakes DJ, Cox DA, Hermiller JB, et al. Usefulness of a cobalt chromium coronary stent alloy. Am J Cardiol. 2003;92:463–466. doi: 10.1016/S0002-9149(03)00669-6
  • El-Tayeb NSM, Yap TC, Brevern PV. Wear characteristics of titanium alloy Ti54 for cryogenic sliding applications. Tribol Int. 2010;43:2345–2354. doi: 10.1016/j.triboint.2010.08.012
  • Tomlinson GA. CVI. A molecular theory of friction. The London, Edinburgh, Dublin Philos Mag J Sci. 1929;7:905–939. doi: 10.1080/14786440608564819
  • Duong CT, Nam JS, Seo EM, et al. Tribological property of the cobalt—chromium femoral head with different regions of wear in total hip arthroplasty. Proc Inst Mech Eng, Part H: J Eng Med. 2010;224:541–549. doi: 10.1243/09544119JEIM709
  • Ali M, Hamzah E, Radzi Toff M. Friction coefficient and surface roughness of TiN-coated HSS deposited using cathodic arc evaporation PVD technique. Ind Lubr Tribol. 2008;60:121–130. doi: 10.1108/00368790810871048
  • De Jager N, Feilzer AJ, Davidson CL. The influence of surface roughness on porcelain strength. Dent Mater. 2000;16:381–388. doi: 10.1016/S0109-5641(00)00030-0
  • Rihan RO. Electrochemical corrosion behavior of X52 and X60 steels in carbon dioxide containing saltwater solution. Mater Res. 2013;16:227–236. doi: 10.1590/S1516-14392012005000170
  • Narayanan R, Seshadri SK, Kwon TY, et al. Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res Part B: Appl Biomater. 2008;85:279–299. doi: 10.1002/jbm.b.30932
  • Mattox DM. Handbook of physical vapor deposition (PVD) processing. UK: William Andrew [u.a]; 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.