821
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of superhydrophobic surfaces based on fluorosilane and TiO2/SiO2 nanocomposites

, , ORCID Icon &
Pages 271-277 | Received 29 Apr 2019, Accepted 14 Dec 2019, Published online: 16 Apr 2020

References

  • Zhi J, Zhang L-Z. Durable superhydrophobic surface with highly antireflective and self-cleaning properties for the glass covers of solar cells. Appl Surf Sci. 2018;454:239–248. doi: 10.1016/j.apsusc.2018.05.139
  • Yu N, Xiao X, Ye Z, et al. Facile preparation of durable superhydrophobic coating with self-cleaning property. Surf Coat Technol. 2018;347:199–208. doi: 10.1016/j.surfcoat.2018.04.088
  • Zhang Z-H, Wang H-J, Liang Y-H, et al. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. Sci Rep. 2018;8:3869. doi: 10.1038/s41598-018-22241-9
  • Zulfiqar U, Hussain SZ, Subhani T, et al. Mechanically robust superhydrophobic coating from sawdust particles and carbon soot for oil/water separation. Colloids Surf, A. 2018;539:391–398. doi: 10.1016/j.colsurfa.2017.12.047
  • Zhu Y, Sun F, Qian H, et al. A biomimetic spherical cactus superhydrophobic coating with durable and multiple anti-corrosion effects. Chem Eng J. 2018;338:670–679. doi: 10.1016/j.cej.2018.01.082
  • Ye Y, Liu Z, Liu W, et al. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chem Eng J. 2018;348:940–951. doi: 10.1016/j.cej.2018.02.053
  • Zhou S, Wang F, Balachandran S, et al. Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties. RSC Adv. 2017;7:52375–52381. doi: 10.1039/C7RA09613E
  • Shaban M, Mohamed F, Abdallah S. Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing ZnO nanocatalyst. Sci Rep. 2018;8:3925. doi: 10.1038/s41598-018-22324-7
  • Zuo Z, Liao R, Song X, et al. Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier. RSC Adv. 2018;8:19906–19916. doi: 10.1039/C8RA00712H
  • Cheng Y, Lu S, Xu W, et al. Controllable fabrication of superhydrophobic alloys surface on copper substrate for self-cleaning, anti-icing, anti-corrosion and anti-wear performance. Surf Coat Technol. 2018;333:61–70. doi: 10.1016/j.surfcoat.2017.10.069
  • Jafari R, Momen G, Eslami E. Fabrication of icephobic aluminium surfaces by atmospheric plasma jet polymerisation. Surf Eng. 2018. DOI:10.1080/02670844.2018.1509813.
  • Zhou X, Lee Y-Y, Chong KSL, et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance. J Mater Chem B. 2018;6:440–448. doi: 10.1039/C7TB02457F
  • Wang Y, He G, Shao Y, et al. Enhanced performance of superhydrophobic polypropylene membrane with modified antifouling surface for high salinity water treatment. Sep Purif Technol. 2018. DOI:10.1016/j.seppur.2018.02.011.
  • Tuo Y, Chen W, Zhang H, et al. One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil. Appl Surf Sci. 2018;446:230–235. doi: 10.1016/j.apsusc.2018.01.046
  • Costantini R, Mollicone J-P, Battista F. Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow. Phys Fluids. 2018;30:025102–025102/14. doi: 10.1063/1.5011805
  • Sohn E-H, Kang HS, Bom J-C, et al. Silica-core perfluorinated polymer-shell composite nanoparticles for highly stable and efficient superhydrophobic surfaces. J Mater Chem A. 2018;6:12950–12955. doi: 10.1039/C8TA02335B
  • Sabry RS, Al-Mosawi MI. Novel approach to fabricate a stable superhydrophobic polycarbonate. Surf Eng. 2018;34:151–157. doi: 10.1080/02670844.2016.1270620
  • Zhu T, Cai C, Duan C, et al. Robust polypropylene fabrics super-repelling various liquids: a simple, rapid and scalable fabrication method by solvent swelling. ACS Appl Mater Interfaces. 2015;7:13996–14003. doi: 10.1021/acsami.5b03056
  • Zhang F, Shi Z, Xu C, et al. Self-fibering growth in the soot-templated CVD coating of silica on mesh for efficient oil/water separation. Mater Des. 2018;154:370–377. doi: 10.1016/j.matdes.2018.05.038
  • Su C, Li Y, Dai Y, et al. Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning. Mater Lett. 2016;170:67–71. doi: 10.1016/j.matlet.2016.01.133
  • Luo Z, Li Y, Duan C, et al. Fabrication of a superhydrophobic mesh based on PDMS/SiO2 nanoparticles/PVDF microparticles/KH-550 by one-step dip-coating method. RSC Adv. 2018;8:16251–16259. doi: 10.1039/C8RA03262A
  • Yang M, Liu W, Jiang C, et al. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydr Polym. 2018;197:75–82. doi: 10.1016/j.carbpol.2018.05.075
  • Tao C, Yan H, Yuan X, et al. Synthesis of shape-controlled hollow silica nanostructures with a simple soft-templating method and their application as superhydrophobic antireflective coatings with ultralow refractive indices. Colloids Surf, A. 2016;501:17–23. doi: 10.1016/j.colsurfa.2016.04.051
  • Zhang D, Li L, Wu Y, et al. One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability. Appl Surf Sci. 2019;473:493–499. doi: 10.1016/j.apsusc.2018.12.174
  • Zhou Y, Ma Y, Sun Y, et al. Robust superhydrophobic surface based on multiple hybrid coatings for application in corrosion protection. ACS Appl Mater Interfaces. 2019;11:6512–6526. doi: 10.1021/acsami.8b19663
  • Lou C, Zhang R, Lu X, et al. Facile fabrication of epoxy/polybenzoxazine based superhydrophobic coating with enhanced corrosion resistance and high thermal stability. Colloids Surf, A. 2019;562:8–15. doi: 10.1016/j.colsurfa.2018.10.066
  • Zhang J, Chen R, Liu J, et al. Construction of ZnO@Co3O4-loaded nickel foam with abrasion resistance and chemical stability for oil/water separation. Surf Coat Technol. 2019;357:244–251. doi: 10.1016/j.surfcoat.2018.09.042
  • Zhao X, Li Y, Li B, et al. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes. J Colloid Interface Sci. 2019;542:8–14. doi: 10.1016/j.jcis.2019.01.115
  • Latthe SS, Sutar RS, Shinde TB, et al. Superhydrophobic leaf mesh decorated with SiO2 nanoparticle-polystyrene nanocomposite for oil–water separation. ACS Appl Nano Mater. 2019;2:799–805. doi: 10.1021/acsanm.8b02021
  • Yang M, Liu W, Jiang C, et al. Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textile based on TiO2 and fluoroalkylsilane. J Mater Sci. 2019;54:2079–2092. doi: 10.1007/s10853-018-3001-1
  • Wang Y, Huang Z, Gurney RS, et al. Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality. Colloids Surf, A. 2019;561:101–108. doi: 10.1016/j.colsurfa.2018.10.054
  • Yuan Z, Bin J, Wang X, et al. Preparation of a polydimethylsiloxane (PDMS)/CaCO3 based superhydrophobic coating. Surf Coat Technol. 2014;254:97–103. doi: 10.1016/j.surfcoat.2014.05.068
  • Wang M, Zhang M, Pang L, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance. J Colloid Interface Sci. 2019;537:91–100. doi: 10.1016/j.jcis.2018.10.105
  • Deng X, Mammen L, Butt H-J, et al. Candle soot as a template for a transparent robust superamphiphobic coating. Science. 2012;335:67–70. doi: 10.1126/science.1207115
  • He J, Mao M, Lu Y, et al. Superhydrophobic anodized Fe surface modified with fluoroalkylsilane for application in LiBr-water absorption refrigeration process. Ind Eng Chem Res. 2017;56:495–504. doi: 10.1021/acs.iecr.6b03542
  • Liang J, Wang L, Bao J, et al. SiO2-g-PS/fluoroalkylsilane composites for superhydrophobic and highly oleophobic coatings. Colloids Surf, A. 2016;507:26–35. doi: 10.1016/j.colsurfa.2016.07.056
  • Qing Y, Yang C, Sun Y, et al. Facile fabrication of superhydrophobic surfaces with corrosion resistance by nanocomposite coating of TiO2 and polydimethylsiloxane. Colloids Surf, A. 2015;484:471–477. doi: 10.1016/j.colsurfa.2015.08.024
  • Kamegawa T, Irikawa K, Yamashita H. Multifunctional surface designed by nanocomposite coating of polytetrafluoroethylene and TiO2 photocatalyst: self-cleaning and superhydrophobicity. Sci Rep. 2017;7:13628. doi: 10.1038/s41598-017-14058-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.