164
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Photocatalytic decomposition of methylene blue by Cr/TiO2 composite coatings

, , , &
Pages 472-481 | Received 11 Jan 2020, Accepted 10 Mar 2020, Published online: 23 Mar 2020

References

  • Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes Pigm. 2003;56:239–249. doi: 10.1016/S0143-7208(02)00159-6
  • Ravikumar K, Deebika B, Balu K. Decolourization of aqueous dye solutions by a novel adsorbent: application of statistical designs and surface plots for the optimization and regression analysis. J Hazard Mater B. 2005;122:75–83. doi: 10.1016/j.jhazmat.2005.03.008
  • Vadivelan V, Kumar KV. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interf Sci. 2005;286:90–100. doi: 10.1016/j.jcis.2005.01.007
  • Janus M, Kusiak E, Morawski AW. Carbon modified TiO2 photocatalyst with enhanced adsorptivity for dyes from water. Catal Lett. 2009;131:506–511. doi: 10.1007/s10562-009-9932-z
  • Moshfegh AZ. Nanoparticle catalysts. J Phys D: Appl Phys. 2009;42:233001–233031. doi: 10.1088/0022-3727/42/23/233001
  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229. doi: 10.1016/S0167-5729(02)00100-0
  • Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater. 2002;14:2812–2816. doi: 10.1021/cm020076p
  • Seong SG, Kim EJ, Kim YS, et al. Influence of deposition atmosphere on photocatalytic activity of TiO2/SiOx double-layers prepared by RF magnetron sputtering. Appl Surf Sci. 2009;256:1–5. doi: 10.1016/j.apsusc.2009.05.059
  • Ning DD, Wu H. Cu-TiO2composites with high incorporated and uniform distributed TiO2particles prepared by jet electrodeposition. Sur Eng. 2019;35:1048–1054. doi: 10.1080/02670844.2019.1598024
  • Mungkalasiri J, Bedel L, Emieux F, et al. DLI-CVD of TiO2–Cu antibacterial thin films: growth and characterization. Surf Coat Technol. 2009;204:887–892. doi: 10.1016/j.surfcoat.2009.07.015
  • Diaz-Uribe C, Vallejo W, Ramos W. Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium. Appl Surf Sci. 2014;319:121–127. doi: 10.1016/j.apsusc.2014.06.157
  • Morán IG, Martínez FF, Merino MR, et al. Photocatalytic behaviour of anodised titanium using different cathodes. Sur Eng. 2019;35:46–53. doi: 10.1080/02670844.2018.1451612
  • Akbarzadeh R, Umbarkar SB, Sonawane RS, et al. Vanadia–titania thin films for photocatalytic degradation of formaldehyde in sunlight. Appl Catal A-Gen. 2010;374:103–109. doi: 10.1016/j.apcata.2009.11.035
  • Yao QT, Sun J, Zhu YJ, et al. Tio2coating prepared by mechanical alloying treatment for photocatalytic degradation. Sur Eng. 2019;35:927–932. doi: 10.1080/02670844.2018.1554738
  • An T, Liu J, Li G, et al. Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2. J. Fu Appl Catal. A: Gen. 2008;350:237–243. doi: 10.1016/j.apcata.2008.08.022
  • Xiang N, Song RG, Xiang B, et al. A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films. Appl Surf. Sci. 2015;347:454–460. doi: 10.1016/j.apsusc.2015.04.136
  • Xiang N, Song RG, Xiang B, et al. Preparation and photocatalytic activity of MAO-TiO2films formed on titanium doped with V2O5and Ag2O. Mater Technol. 2016;31:58–63. doi: 10.1179/1753555715Y.0000000028
  • Bayati MR, Golestani-Fard F, Moshfegh AZ. Visible photodecomposition of methylene blue over micro arc oxidized WO3–loaded TiO2 nano-porous layers. Appl Catal A-Gen. 2010;382:322–331. doi: 10.1016/j.apcata.2010.05.017
  • Li WP, Tang MQ, Zhu LQ, et al. Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance. Appl Surf Sci. 2012;258:10017–10021. doi: 10.1016/j.apsusc.2012.06.066
  • Yang XW, Ma AB, Liu H, et al. Microstructure and corrosion resistance of yellow MAO coatings. Sur Eng. 2019;35:334–342. doi: 10.1080/02670844.2018.1445939
  • Javidi M, Fadaee H. Plasma electrolytic oxidation of 2024-T3 aluminum alloy and investigation on microstructure and wear behavior. Appl Surf Sci. 2013;286:212–219. doi: 10.1016/j.apsusc.2013.09.049
  • Tekin KC, Malayoğlu U, Shrestha S. Electrochemical behavior of plasma electrolytic oxide coatings on rare earth element containing Mg alloys. Surf Coat Technol. 2013;236:540–549. doi: 10.1016/j.surfcoat.2013.10.051
  • Veys-Renaux D, Rocca E, Martin J, et al. Initial stages of AZ91 Mg alloy micro-arc anodizing: Growth mechanisms and effect on the corrosion resistance. Electrochim Acta. 2014;124:36–45. doi: 10.1016/j.electacta.2013.08.023
  • Zhang Y, Fan W, Du HQ, et al. Microstructure and photocatalytic property of TiO2 and Fe3+:TiO2 films produced by micro-arc oxidation. Surf Coat Technol. 2017;315:196–204. doi: 10.1016/j.surfcoat.2017.02.043
  • Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7
  • Zhou X, Thompson GE, Skeldon P, et al. Film formation and detachment during anodizing of Al–Mg alloys. Corros Sci. 1999;41:1599–1613. doi: 10.1016/S0010-938X(99)00007-4
  • Liu F, Xu JL, Wang FP, et al. Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. Sur Coat Technol. 2010;204:3294–3299. doi: 10.1016/j.surfcoat.2010.03.044
  • Nune KC, Misra RDK, Gai X, et al. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. J. Biomater Appl. 2018;32:1032–1048. doi: 10.1177/0885328217748860
  • Stojadinović S, Vasilić R, Petković M, et al. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Appl Surf Sci. 2013;265:226–233. doi: 10.1016/j.apsusc.2012.10.183
  • Wang YQ, Jiang XD, Pan CX. “In situ” preparation of a TiO2/Eu2O3 composite film upon Ti alloy substrate by micro-arc oxidation and its photo-catalytic property. J Alloys Comp. 2012;538:16–20. doi: 10.1016/j.jallcom.2012.05.083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.