251
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and properties of nanocrystalline Cu–Ta thin films prepared by direct current magnetron sputtering

, ORCID Icon, , , &
Pages 160-168 | Received 27 Dec 2019, Accepted 19 Mar 2020, Published online: 10 Apr 2020

References

  • Qiu YH, Bai Q, Fu EG, et al. A novel approach to extracting hardness of copper/niobium (Cu/Nb) multilayer films by removing the substrate effect. Mater Sci Eng: A. 2018;724:60–68. doi: 10.1016/j.msea.2018.03.047
  • Xue S, Li Q, Xie DY, et al. High strength, deformable nanotwinned Al–Co alloys. Mater Res Lett. 2019;7(1):33–39. doi: 10.1080/21663831.2018.1552211
  • Ebrahim-Ghajari M, Allahkaram SR, Mahdavi S. Corrosion behaviour of electrodeposited nanocrystalline Co and Co/ZrO2 nanocomposite coatings. Surf Eng. 2015;31(3):251–257. doi: 10.1179/1743294414Y.0000000355
  • Asempah I, Xu J, Yu L, et al. Microstructure, mechanical and tribological properties of magnetron sputtered Ti-B-N films. Surf Eng. 2019;35(8):701–709. doi: 10.1080/02670844.2019.1575569
  • Anvari SR, Monirvaghefi SM, Enayati MH. Wear characteristics of functionally graded nanocrystalline Ni–P coatings. Surf Eng. 2015;31(9):693–700. doi: 10.1179/1743294415Y.0000000023
  • Wasekar NP, Gowthami S, Jyothirmayi A, et al. Corrosion behaviour of compositionally modulated nanocrystalline Ni–W coatings. Surf Eng. 2019. https://doi.org/10.1080/02670844.2019.1660035.
  • Zhao M, Issa I, Pfeifenberger MJ, et al. Tailoring ultra-strong nanocrystalline tungsten nanofoams by reverse phase dissolution. Acta Mater. 2020;182:215–225. doi: 10.1016/j.actamat.2019.10.030
  • Kapoor M, Kaub T, Darling KA, et al. An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb. Acta Mater. 2017;126:564–575. doi: 10.1016/j.actamat.2016.12.057
  • Sharma AD, Sharma HB. Electrical and magnetic properties of Mn-doped BiFeO3 nanomaterials. Integr Ferroelectr. 2019;203(1):81–90. doi: 10.1080/10584587.2019.1674969
  • Fu B, Han J, Guo S-Q, et al. Room-temperature and high-temperature magnetic permeability of Co-doped nanocrystalline alloys. Rare Met. 2018;37(5):427–432. doi: 10.1007/s12598-018-1037-7
  • Craciun D, Vasile BS, Lambers E, et al. Microstructural investigations of 800 keV Ar ions irradiated nanocrystalline ZrN thin films. Surf Eng. 2019;36(3):326–333. doi: 10.1080/02670844.2019.1668677
  • Darling KA, Tschopp MA, Guduru RK, et al. Microstructure and mechanical properties of bulk nanostructured Cu–Ta alloys consolidated by equal channel angular extrusion. Acta Mater. 2014;76:168–185. doi: 10.1016/j.actamat.2014.04.074
  • Huang Y, Sabbaghianrad S, Almazrouee AI, et al. The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsion. Mater Sci Eng: A. 2016;656:55–66. doi: 10.1016/j.msea.2016.01.027
  • Torbati-Sarraf H, Torbati-Sarraf SA, Poursaee A, et al. Electrochemical behavior of a magnesium ZK60 alloy processed by high-pressure torsion. Corros Sci. 2019;154:90–100. doi: 10.1016/j.corsci.2019.04.006
  • Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Mater. 2006;54(12):3333–3341. doi: 10.1016/j.actamat.2006.03.021
  • Beygi R, Mehrizi MZ, Mostaan H, et al. Synthesis of a NiTi2-AlNi-Al2O3 nanocomposite by mechanical alloying and heat treatment of Al-TiO2-NiO. Int J Mine Metall Mater. 2019;26(3):345–349. doi: 10.1007/s12613-019-1743-7
  • Farahbakhsh I, Mashimo T. Surface mechanical coating of Cu plate by Cu Al powders. Surf Eng. 2018;34(12):925–937. doi: 10.1080/02670844.2018.1430010
  • Kim JJ, Choi Y, Suresh S, et al. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science. 2002;295(5555):654–657.
  • Koch CC, Scattergood RO, Saber M, et al. High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies. J Mater Res. 2013;28(13):1785–1791. doi: 10.1557/jmr.2012.429
  • Zhang K, Weertman JR, Eastman JA. Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl Phys Lett. 2005;87(6):061921. doi: 10.1063/1.2008377
  • Akbarpour MR, Kim HS. Microstructure, grain growth, and hardness during annealing of nanocrystalline Cu powders synthesized via high energy mechanical milling. Mater Des. 2015;83:644–650. doi: 10.1016/j.matdes.2015.06.064
  • Chookajorn T, Murdoch HA, Schuh CA. Design of stable nanocrystalline alloys. Science. 2012;337(6097):951–954. doi: 10.1126/science.1224737
  • Frolov T, Darling KA, Kecskes LJ, et al. Stabilization and strengthening of nanocrystalline copper by alloying with tantalum. Acta Mater. 2012;60(5):2158–2168. doi: 10.1016/j.actamat.2012.01.011
  • Rigsbee JM. Development of nanocrystalline copper-refractory metal alloys. Mater Sci Forum. 2007;561–565:2373–2378. doi: 10.4028/www.scientific.net/MSF.561-565.2373
  • Darling KA, Rajagopalan M, Komarasamy M, et al. Extreme creep resistance in a microstructurally stable nanocrystalline alloy. Nature. 2016;537(7620):378–381. doi: 10.1038/nature19313
  • Du Y, Li L, Pureza JM, et al. Thermal stability of nanocrystalline grains in Cu-W films. Surf Coat Technol. 2019;357:662–668. doi: 10.1016/j.surfcoat.2018.10.069
  • Pantsyrny VI, Khlebova NE, Sudyev SV, et al. Thermal stability of the high strength high conductivity Cu–Nb, Cu–V, and Cu–Fe nanostructured microcomposite wires. IEEE Trans Appl Supercond. 2014;24(3):1–4. doi: 10.1109/TASC.2013.2293655
  • Lin CH, Chu JP, Mahalingam T, et al. Sputtered copper films with insoluble Mo for Cu metallization: a thermal annealing study. J Electron Mater. 2003;32(11):1235–1239. doi: 10.1007/s11664-003-0017-2
  • Guo ZZ. Study on the structure and properties of immiscible system (Cu-W, Mo, Nb) composite films and multilayer films [doctoral dissertation]. Kunming: Kunming University of Science and Technology; 2016.
  • Sivaram S. Chemical vapor deposition: thermal and plasma deposition of electronic materials. New York (NY): Springer; 1995.
  • Zeng F, Gao Y, Li L, et al. Elastic modulus and hardness of Cu–Ta amorphous films. J Alloys Compd. 2005;389(1–2):75–79. doi: 10.1016/j.jallcom.2004.06.077
  • Ye F, Zhao L, Mu C, et al. Influence of yttrium addition on reactive sputtered W–Y–N coatings. Surf Eng. 2017;33(8):626–632. doi: 10.1080/02670844.2016.1231758
  • Asif SAS, Pethica JB. 2011. Nano scale creep and the role of defects. MRS Proceedings, Cambridge: Cambridge University Press.
  • Qiu CJ. Physical properties of materials. Harbin: Harbin Institute of Technology Press; 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.