252
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Physical and electrical properties’ evaluation of SnS:Cu thin films

ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 137-147 | Received 08 Sep 2019, Accepted 06 Apr 2020, Published online: 24 Apr 2020

References

  • Sinsermsuksakul P, Sun L, Lee SW, et al. Overcoming efficiency limitations of SnS-based solar cells. Adv Energy Mater. 2014;4:1400496. doi: 10.1002/aenm.201400496
  • Vikraman D, Hussain S, Akbar K, et al. Improved hydrogen evolution reaction performance using MoS2-WS2 heterostructures by physicochemical process. ACS Sustain Chem Eng. 2018;6:8400–8409. doi: 10.1021/acssuschemeng.8b00524
  • Johny J, Sepulveda-Guzman S, Krishnan B, et al. Tin sulfide: reduced graphene oxide nanocomposites for photovoltaic and electrochemical applications. Sol Energy Mater Sol Cells. 2019;189:53–62. doi: 10.1016/j.solmat.2018.09.025
  • Vikraman D, Akbar K, Hussain S, et al. Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy. 2017;35:101–114. doi: 10.1016/j.nanoen.2017.03.031
  • Kamli K, Hadef Z, Chouial B, et al. Synthesis and characterisation of tin sulphide thin films. Surf Eng. 2017;33:567–572. doi: 10.1080/02670844.2016.1271593
  • Hussain S, Akbar K, Vikraman D, et al. WS(1−x)Sex nanoparticles decorated three-dimensional graphene on nickel foam: a robust and highly efficient electrocatalyst for the hydrogen evolution reaction. Nanomaterials. 2018;8:929. doi: 10.3390/nano8110929
  • Lingg M, Spescha A, Haass SG, et al. Structural and electronic properties of CdTe1-xSex films and their application in solar cells. Sci Technol Adv Mater. 2018;19:683–692. doi: 10.1080/14686996.2018.1497403
  • Vikraman D, Thiagarajan S, Karuppasamy K, et al. Shape- and size-tunable synthesis of tin sulfide thin films for energy applications by electrodeposition. Appl Surf Sci. 2019;479:167–176. doi: 10.1016/j.apsusc.2019.02.056
  • Reddy TS, Kumar MCS. Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 2016;6:95680–95692. doi: 10.1039/C6RA20129F
  • Koteeswara Reddy N, Devika M, Gopal ESR. Review on Tin (II) sulfide (SnS) material: synthesis, properties, and applications. Crit Rev Solid State Mater Sci. 2015;40:359–398. doi: 10.1080/10408436.2015.1053601
  • Koteeswara Reddy N, Hahn YB, Devika M, et al. Temperature-dependent structural and optical properties of SnS films. J Appl Phys. 2007;101:093522. doi: 10.1063/1.2729450
  • Jamali-Sheini F, Niknia F, Cheraghizade M, et al. Broad spectral response of Se-doped SnS nanorods synthesized through electrodeposition. ChemElectroChem. 2017;4:1478–1486. doi: 10.1002/celc.201600826
  • Dhanasekaran V, Mahalingam T, Rhee JK, et al. Bath temperature effects on the microstructural and morphological properties of SnS thin films. J Adv Microsc Res. 2011;6:126–130. doi: 10.1166/jamr.2011.1065
  • Choi H, Lee N, Park H, et al. Development of a SnS film process for energy device applications. Appl Sci. 2019;9:4606. doi: 10.3390/app9214606
  • Deng Z, Cao D, He J, et al. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano. 2012;6:6197–6207. doi: 10.1021/nn302504p
  • Spalatu N, Hiie J, Kaupmees R, et al. Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux. ACS Appl Mater Interfaces. 2019;11:17539–17554. doi: 10.1021/acsami.9b03213
  • Yago A, Kibishi T, Akaki Y, et al. Influence of Sn/S composition ratio on SnS thin-film solar cells produced via co-evaporation method. Jpn J Appl Phys. 2018;57:02CE08. doi: 10.7567/JJAP.57.02CE08
  • Niemegeers A, Burgelman M, De Vos A. On the CdS/CuInSe2 conduction band discontinuity. Appl Phys Lett. 1995;67:843–845. doi: 10.1063/1.115523
  • Sebastian S, Kulandaisamy I, Arulanantham AMS, et al. Influence of Al doping concentration on the opto-electronic chattels of SnS thin films readied by NSP. Opt Quantum Electron. 2019;51:100. doi: 10.1007/s11082-019-1812-1
  • Sebastian S, Kulandaisamy I, Valanarasu S, et al. Investigations on Fe doped SnS thin films by nebulizer spray pyrolysis technique for solar cell applications. J Mater Sci Mater Electron. 2019;30:8024–8034. doi: 10.1007/s10854-019-01124-3
  • Gremenok VF, Rud’ VY, Rud’ YV, et al. Photosensitive thin-film In/p-PbxSn1 − xS Schottky barriers: fabrication and properties. Semiconductors. 2011;45:1053–1058. doi: 10.1134/S1063782611080094
  • Yang L, Wu M, Yao K. Transition-metal-doped group-IV monochalcogenides: a combination of two-dimensional triferroics and diluted magnetic semiconductors. Nanotechnology. 2018;29:215703. doi: 10.1088/1361-6528/aab344
  • Bade BP, Garje SS, Niwate YS, et al. Tribenzyltin(IV)chloride thiosemicarbazones: novel single source precursors for growth of SnS thin films. Chem Vap Depos. 2008;14:292–295. doi: 10.1002/cvde.200806687
  • Huang W, Cheng S, Zhou H. Electrical and optical properties of in-doped SnS thin films prepared by thermal evaporation. ECS Trans. 2012;44:1295–1301. doi: 10.1149/1.3694463
  • Avellaneda D, Krishnan B, Das Roy TK, et al. Modification of structure, morphology and physical properties of tin sulfide thin films by pulsed laser irradiation. Appl Phys A. 2013;110:667–672. doi: 10.1007/s00339-012-7148-3
  • Bommireddy PR, Musalikunta CS, Uppala C, et al. Influence of Cu doping on physical properties of sol-gel processed SnS thin films. Mater Sci Semicond Process. 2017;71:139–144. doi: 10.1016/j.mssp.2017.07.020
  • Leng J, Wang Z, Wang J, et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev. 2019;48:3015–3072. doi: 10.1039/C8CS00904J
  • Rohini Devi A, Jegatha Christy A, Deva Arun Kumar K, et al. Physical properties evaluation of nebulized spray pyrolysis prepared Nd doped ZnO thin films for opto-electronic applications. J Mater Sci Mater Electron. 2019;30:7257–7267. doi: 10.1007/s10854-019-01039-z
  • Sebastian S, Kulandaisamy I, Valanarasu S, et al. Microstructural and electrical properties evaluation of lead doped tin sulfide thin films. J Solgel Sci Technol. 2020;93:52–61. doi: 10.1007/s10971-019-05169-y
  • Nikolic PM, Mihajlovic P, Lavrencic B. Splitting and coupling of lattice modes in the layer compound SnS. J Phys C Solid State Phys. 1977;10:L289–L292. doi: 10.1088/0022-3719/10/11/003
  • Chamberlain JM, Nikolic PM, Merdan M, et al. Far-infrared optical properties of SnS. J Phys C Solid State Phys. 1976;9:L637–L642. doi: 10.1088/0022-3719/9/22/004
  • Devika M, Koteeswara Reddy N, Prashantha M, et al. The physical properties of SnS films grown on lattice-matched and amorphous substrates. Phys Status Solid. 2010;207:1864–1869. doi: 10.1002/pssa.200925379
  • Bedir M, Tunç A, Öztas M. Investigation of the characteristics of the boron doped MnO films deposited by spray pyrolysis method. Acta Phys Pol. 2016;129:1159–1164. doi: 10.12693/APhysPolA.129.1159
  • Mahalingam T, Dhanasekaran V, Chandramohan R, et al. Microstructural properties of electrochemically synthesized ZnSe thin films. J Mater Sci. 2012;47:1950–1957. doi: 10.1007/s10853-011-5989-3
  • Dhanasekaran V, Mahalingam T. Surface modifications and optical variations of (-111) lattice oriented CuO nanofilms for solar energy applications. Mater Res Bull. 2013;48:3585–3593. doi: 10.1016/j.materresbull.2013.05.072
  • Mahalingam T, Dhanasekaran V, Ravi G, et al. Effect of deposition potential on the physical properties of electrodeposited CuO thin films. J Optoelectron Adv Mater. 2010;12:1327–1332.
  • Sundaram K, Dhanasekaran V, Mahalingam T. Structural and magnetic properties of high magnetic moment electroplated CoNiFe thin films. Ionics. 2011;17:835–842. doi: 10.1007/s11581-011-0580-0
  • Akkari A, Reghima M, Guasch C, et al. Effect of copper doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition. J Mater Sci. 2012;47:1365–1371. doi: 10.1007/s10853-011-5912-y
  • Wang W, Leung KK, Fong WK, et al. Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer. J Appl Phys. 2012;111:093520. doi: 10.1063/1.4709732
  • Zhao Y, Zhang Z, Dang H, et al. Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mat Sci Eng B. 2004;113:175–178. doi: 10.1016/S0921-5107(04)00407-6
  • Javed A, Qurat ul A, Bashir M. Controlled growth, structure and optical properties of Fe-doped cubic π- SnS thin films. J Alloys Compd. 2018;759:14–21. doi: 10.1016/j.jallcom.2018.05.158
  • Patel M, Ray A. Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv. 2014;4:39343–39350. doi: 10.1039/C4RA06219A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.