290
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced corrosion resistance of plasma electrolytic oxidation coatings prepared on Mg alloy ZX using nano-Al2O3 and NaF incorporated electrolyte

, ORCID Icon & ORCID Icon
Pages 246-252 | Received 14 Nov 2019, Accepted 12 May 2020, Published online: 05 Jun 2020

References

  • Luo AA. Magnesium: current and potential automotive applications. Jom. 2002;54(2):42–48. doi: 10.1007/BF02701073
  • Sakintuna B, Lamari-Darkrim F, Hirscher M. etal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32(9):1121–1140. doi: 10.1016/j.ijhydene.2006.11.022
  • Luo-Min XU, Wang X, Lei L, et al. Densification process of cerium-based conversion coatings on AZ31 magnesium alloy. Chin J Nonferr Met. 2013;23(11):3135–3140.
  • Bian M, Sasaki T, Suh B, et al. Development of heat-treatable high-strength Mg–Zn–Ca–Zr sheet alloy with excellent room temperature formability. TMS Annual Meeting & Exhibition. Springer; 2018. p. 361–364.
  • Chaharmahali R, Fattah-Alhosseini A, Esfahani H. Increasing the in-vitro corrosion resistance of AZ31B-Mg alloy via coating with hydroxyapatite using plasma . J Asian Ceram Societies. 2019;8:1–11.
  • Zhang X, Yang L, Lu X, et al. Characterization and property of dual-functional Zn-incorporated TiO2 micro-arc oxidation coatings: the influence of current density. J Alloys Compd. 2019;810:151893. doi: 10.1016/j.jallcom.2019.151893
  • Soliman H, Hamdy AS. Comparative study of micro-arc oxidation treatment for AM, AZ and MZ magnesium alloys. Prote Metals Phys Chem Surf. 2015;51(4):620–629. doi: 10.1134/S2070205115040292
  • Jian S-Y, Ho M-L, Shih B-C, et al. Evaluation of the corrosion resistance and cytocompatibility of a bioactive micro-arc oxidation coating on AZ31 Mg alloy. Coatings. 2019;9(6):396. doi: 10.3390/coatings9060396
  • Kalinichenko O, Holovenko V, Roienko K, et al. Corrosion of magnesium alloy AZ31 coated by plasma electrolytic oxidation. Surf Eng Appl Electrochem. 2019;55(5):595–601. doi: 10.3103/S1068375519050053
  • Soliman H, Hamdy A. Effect of fluoride ions modifier and ceramic Al2O3 particles additives on plasma electrolytic oxidation of AZ31. Surf Eng. 2017;33(10):767–772. doi: 10.1080/02670844.2016.1214407
  • Li X, Liu X, Luan BL. Corrosion and wear properties of PEO coatings formed on AM60B alloy in NaAlO2 electrolytes. Appl Surf Sci. 2011;257(21):9135–9141. doi: 10.1016/j.apsusc.2011.05.115
  • Liang J, Guo B, Tian J, et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Appl Surf Sci. 2005;252(2):345–351. doi: 10.1016/j.apsusc.2005.01.007
  • Xue W, Deng Z, Lai Y, et al. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on Aluminum alloy. J Am Ceram Soc. 1998;81(5):1365–1368. doi: 10.1111/j.1151-2916.1998.tb02493.x
  • Ding Z-Y, Cui L-Y, Chen X-B, et al. In vitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy—the influence of intermetallic compound Mg2Ca. J Alloys Compd. 2018;764:250–260. doi: 10.1016/j.jallcom.2018.06.073
  • Yu C, Cui L-Y, Zhou Y-F, et al. Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy. Surf Coat Technol. 2018;344:1–11. doi: 10.1016/j.surfcoat.2018.03.007
  • Shi L, Xu Y, Li K, et al. Effect of additives on structure and corrosion resistance of ceramic coatings on Mg–Li alloy by micro-arc oxidation. Curr Appl Phys. 2010;10(3):719–723. doi: 10.1016/j.cap.2009.10.011
  • Li LH, Sankara Narayanan T, Kim YK, et al. Characterization and corrosion resistance of pure Mg modified by micro-arc oxidation using phosphate electrolyte with/without NaOH. Surf Interface Anal. 2014;46(1):7–15. doi: 10.1002/sia.5339
  • Tang M, Feng Z, Wu X, et al. Microarc oxidation coatings containing TiC and NbC on magnesium alloy. Surf Eng. 2019:1–9.
  • Liu Y, Duan L, Ma S, et al. Influence of Additions of Al2O3 Powders in Electrolytical Solution on Microstructure and Corrosion Protection of Ceramic Coatings Formed on Magnesium Alloy During Micro-Arc Oxidation. J-Chin Soc Corros Prot. 2007;27(4):205.
  • Duan H, Yan C, Wang F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim Acta. 2007;52(11):3785–3793. doi: 10.1016/j.electacta.2006.10.066
  • Heydarian A, Atapour M, Hakimizad A, et al. The effects of anodic amplitude and waveform of applied voltage on characterization and corrosion performance of the coatings grown by plasma electrolytic oxidation on AZ91 Mg alloy from an aluminate bath. Surf Coat Technol. 2020;383:125235. doi: 10.1016/j.surfcoat.2019.125235
  • Patnaik P. Handbook of inorganic chemicals. New York: McGraw-Hill; 2003.
  • Ahmed MK, Mansour SF, Mostafa MS, et al. Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J Mater Sci. 2018;54(3):1977–1991. doi: 10.1007/s10853-018-2999-4
  • Mansour SF, El-dek SI, Dorozhkin SV, et al. Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. New J Chem. 2017;41(22):13773–13783. doi: 10.1039/C7NJ01777D
  • Li X, Luan BL. Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy. Mater Lett. 2012;86:88–91. doi: 10.1016/j.matlet.2012.07.032
  • Kazanski B, Kossenko A, Zinigrad M, et al. Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy. Appl Surf Sci. 2013;287:461–466. doi: 10.1016/j.apsusc.2013.09.180
  • Hahn R, Brunner J, Kunze J, et al. A novel approach for the formation of Mg(OH)2/MgO nanowhiskers on magnesium: rapid anodization in chloride containing solutions. Electrochem Commun. 2008;10(2):288–292. doi: 10.1016/j.elecom.2007.12.007
  • Wang L, Wu T, Cao D, et al. Self-growth of micro- and nano-structured Mg(OH)2 on electrochemically anodised Mg–Li alloy surface. J Exp Nanosci. 2015;10(1):56–65. doi: 10.1080/17458080.2013.792958

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.